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Abstract In this article, a fourth order quartic spline method has been developed to

obtain the numerical solution of second order boundary value problem with Dirichlet

boundary conditions. The development of the quartic spline method and convergence

analysis have been presented. Three test problems have been used for numerical ex-

perimentations purposes. Numerical experimentations showed that the quartic spline

method generates more accurate numerical results compared with an existing cubic

spline method in solving second order boundary value problems.
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1 Introduction

Boundary value problems (BVPs) are arising frequently in various fields of sciences and
engineering. Generally, it is very difficult to solve these types of problems analytically.
Hence, numerous numerical methods have been developed to find the approximate solutions
for these problems. One of these methods is called the spline method. The use of spline
method for solving BVPs was first discussed by Bickley in 1968, [1]. Following his work,
many researchers started using spline methods to approximate BVPs. For instance, Caglar
et al. [2], Ramadan et al. [3], Rashidinia et al. [4], Al-Said et al. [5], Hamid et al. [1, 6] and
Fauzi and Sulaiman [7] have used different degrees of splines to approximate second order
BVPs. Most of these researchers used their spline methods to approximate special cases of
BVPs such as, linear BVPs and BVPs without the presence of the first derivative.

In our work, however, we are considering the general second order BVPs of the form

u′′ = f (x, u, u′) , a ≤ x ≤ b, (1)

subject to the boundary conditions

u (a) = α, u (b) = β. (2)

Keller [8] shown that problem (1) together with the boundary conditions in (2), has a unique
solution if f (x, u, u′) satisfies the following conditions:

(i) f (x, u, u′) is continuous on a domain Ω, where the domain Ω is defined as Ω =
{ (x, u, u′)|a ≤ x ≤ b,−∞ < u <∞,−∞ < u′ <∞};

(ii) ∂f
∂u

and ∂f
∂u′

exist and continuous for all (x, u, u′) ∈ Ω; and
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(iii) ∂f
∂u

> 0 and
∣

∣

∣

∂f
∂u′

∣

∣

∣
≤W , for some positive constant W .

However, in the rest of this discussion, we have to assume that u ∈ C5 [a, b]. The main
objective of our research is to introduce a new quartic spline method to approximate the
second order BVPs as in (1).

This paper is organized as follows. In Section 2, a quartic spline method is constructed.
Section 3 discussed the convergence of the proposed method. To show the performance of
the proposed method and for comparison purposes, some numerical examples are given in
Section 4. Finally, the conclusion is given in Section 5.

2 Quartic Spline

Let P be the partition for the interval [a, b] such that

P : a = x0, x1, . . . , xn = b,

where xi = a+ ih and h = b−a
n

. We assumed that our quartic spline function has to satisfy
the following conditions:

(i) S (x) = si (x), x ∈ [xi, xi+1], i = 0, 1, 2, . . . , n− 1;

(ii) S (a) = u (a), S (b) = u (b); and

(iii) s
(r)
i (xi+1) = s

(r)
i+1 (xi+1), r = 0, 1, 2, 3.

We let u (x) be the exact solution of problem (1) and si be the approximate solution to
ui = u (xi) obtained by the quartic spline si (x) on the interval [xi, xi+1]. Since our spline
is of degree four, the third derivative is a linear polynomial, which can be written as follows

s′′′i (x) = Zi+1
(x− xi)

h
+ Zi

(xi+1 − x)

h
, (3)

where Zi = s′′′i (x), x ∈ [xi, xi+1]. On integrating equation (3) three times, we obtain

si (x) = Zi+1
(x− xi)

4

24h
− Zi

(xi+1 − x)
4

24h
+ Ai (x− xi)

2
+Bi (xi+1 − x) +Ci (x− xi) , (4)

where Ai, Bi and Ci, i = 0, 1, 2, . . . , n− 1, are coefficients which need to be determined in
terms of ui, ui+1, µi and Zi. In order to derive explicit expressions for the three coefficients
of equation (4), we define the following relations:

ui = si (xi) , (5)

ui+1 = si (xi+1) , (6)

and
µi = s′′i (xi) . (7)

From equations (5), (6) and (7), and by using straightforward calculation, we obtain the
following equations:

Ai =
µi

2
+
h

4
Zi, (8)
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Bi =
ui

h
+
h2

24
Zi, (9)

and

Ci =
ui+1

h
−
h2

4
Zi −

h2

24
Zi+1 −

h

2
µi. (10)

Now, we impose the first and second continuity conditions of quartic spline si (x) at the

point xi+1 i.e. s
(r)
i (xi+1) = s

(r)
i+1 (xi+1), r = 1, 2, and the following relations are obtained

5h2

24
Zi +

6h2

24
Zi+1 +

h2

24
Zi+2 +

h

2
µi +

h

2
µi+1 =

ui − 2ui+1 + ui+2

h
, (11)

and
h

2
Zi +

h

2
Zi+1 + µi − µi+1 = 0. (12)

Then, we eliminate µi+1 from equations (11) and (12) to obtain

µi =
ui − 2ui+1 + ui+2

h2
−

11h

24
Zi −

12h

24
Zi+1 −

h

24
Zi+2. (13)

On substituting equation (13) into equation (11), we obtain the following main recurrence
relation given by

Zi + 11Zi+1 + 15Zi+2 + Zi+3 =
24

h3
(−ui + 3ui+1 − 3ui+2 + ui+3) , i = 0, 1, 2, . . . , n− 3.

(14)
Equation (14) forms a system of n − 2 equations with n + 1 unknowns, which are the

Zi, i = 0, 1, 2, . . . , n. To solve this system uniquely, we have to add three more conditions
at the end points i.e. x0 and xn. Hence, we choose Z0 = Zn = µ0 = 0. To obtain the last
equation, we substitute Z0 = 0 and µ0 = 0 in equation (13) to obtain

12Z1 + Z2 =
24

h2
(u0 − 2u1 + u2) . (15)

Equations (14) and (15) form a system of n− 1 equations with n− 1 unknowns. These
unknowns can be solved using the MATHEMATICA software. Finally, to construct an
algorithm for the quartic spline method, we can use the following steps:

Step 1: Divide the interval [a, b] into n − 1 subintervals by taking xi = a + ih, where
h = 1/n and i = 0, 1, 2, . . . , n.

Step 2: Apply shooting method with the fourth order explicit Runge-Kutta method to
problem (1), to obtain the approximate solution ui at the grid points.

Step 3: Use equations (14) and (15) to form a system of linear equations, and then solve
for the values of Ai, Bi and Ci for i = 0, 1, 2, . . . , n− 1.

Step 4: Use the values of Ai, Bi, Ci, Zi and ui obtained from Step 2 and Step 3 to
construct the quartic spline solution si (x) in equation (4), to approximate the solution
of problem (1).
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3 Convergence Analysis

Let si (x) given by equation (4), denotes the quartic spline using the exact values ui, µi

and Zi. Also, let s̃i (x) denotes the quartic spline constructed using ũi, µ̃i and Z̃i, where
ũi is the approximate solution of problem (1) obtained by the shooting method with fourth
order explicit Runge-Kutta method; while µ̃i and Z̃i are the second and the third derivative
of the function si (x) at the point (xi, ũi), respectively. Then, s̃i (x) is given by

s̃i (x) = Z̃i+1
(x− xi)

4

24h
− Z̃i

(xi+1 − x)
4

24h
+ Ãi (x− xi)

2
+ B̃i (xi+1 − x) + C̃i (x− xi) ,

(16)
where

Ãi =
µ̃i

2
+
h

4
Z̃i,

B̃i =
ũi

h
+
h2

24
Z̃i,

and

C̃i =
ũi+1

h
−
h2

4
Z̃i −

h2

24
Z̃i+1 −

h

2
µ̃i,

for x ∈ [xi, xi+1].
Assume that e (x) defines the error between the exact solution u (x) and the spline

function s̃i (x) for problem (1) given by

e (x) = u (x) − S̃ (x) , x ∈ [a, b] . (17)

It is easy to verify that we can rewrite the error function e (x) as follows

e (x) = [u (x) − S (x)] +
[

S (x) − S̃ (x)
]

e (x) = eI (x) + eD (x) ,
(18)

where eI (x) is the error caused by spline interpolation and eD (x) is the error caused by
the discretization of problem (1). Now, to estimate e (x), we have to estimate eI (x) and
eD (x) separately.

Since our spline is a polynomial of degree four, then we can write eI (x) over the interval
[xi, xi+1] as

u (x) − si (x) =
u(5) (ζi)

5!
(x− xi−2) (x− xi−1) (x− xi) (x− xi+1) (x− xi+2) , (19)

for some ζi ∈ [xi, xi+1]. We recalled that every subinterval has length of h, and if we let
t = x− xi, then equation (19) can be rewritten as

u (x) − si (x) =
u(5) (ζi)

5!
(2h+ t) (h+ t) (t) (h− t) (2h− t) . (20)

Calculation on the expression (2h+ t) (h+ t) (t) (h− t) (2h− t) in equation (20) shows that

it has maximum value at t = −

√

15+
√

145
10

h, and it is equal to 3.632h5. Then, u (x)− si (x)
is bounded by

‖u (x) − si (x)‖∞ ≤ 0.0303h5
∥

∥

∥
u(5) (ζi)

∥

∥

∥

∞
. (21)
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Let W 5 = max
x∈[a,b]

∥

∥u(5) (x)
∥

∥

∞. Therefore, it is easy to conclude that

‖eI (x)‖∞ ≤ 0.0303W 5h5. (22)

In order to estimate the error function eD (x), we can subtract equation (16) from
equation (4) to obtain

si (x) − s̃i (x) =
(

Zi+1 − Z̃i+1

)

(x−xi)
4

24h
−

(

Zi − Z̃i

)

(xi+1−x)4

24h
+

(

Ai − Ãi

)

(x− xi)
2

+
(

Bi − B̃i

)

(xi+1 − x) +
(

Ci − C̃i

)

(x− xi) ,

(23)

for x ∈ [xi, xi+1]. Let X = (x0, x1, . . . , xn)
T
, U = (u0, u1, . . . , un)

T
, Ũ = (ũ0, ũ1, . . . , ũn)

T
,

µ = (µ0, µ1, . . . , µn)
T
, µ̃ = (µ̃0, µ̃1, . . . , µ̃n)

T
, Z = (Z0, Z1, . . . , Zn)

T
and Z̃ =

(

Z̃0, Z̃1, . . . , Z̃n

)T

.

From equation (23), it is easy to see that

‖eD (x)‖∞ ≤
∥

∥

∥
U − Ũ

∥

∥

∥

∞
+ h2 ‖µ− µ̃‖∞ +

h3

2

∥

∥

∥
Z − Z̃

∥

∥

∥

∞
. (24)

We first estimate ‖µ− µ̃‖∞. We use equation (13) to obtain

µi − µ̃i = ui−ũi

h2 − 2
ui+1−ũi+1

h2 +
ui+2+ũi+2

h2 − 11h
24

(

Zi − Z̃i

)

−12h
24

(

Zi+1 − Z̃i+1

)

− h
24

(

Zi+2 − Z̃i+2

)

.
(25)

Therefore, from equation (25), we obtain

‖µ− µ̃‖∞ ≤
3

h2

∥

∥

∥
U − Ũ

∥

∥

∥

∞
+
h

2

∥

∥

∥
Z − Z̃

∥

∥

∥

∞
. (26)

On substituting equation (26) into equation (24), we obtain

‖eD(x)‖∞ ≤ 4
∥

∥

∥
U − Ũ

∥

∥

∥

∞
+ h3

∥

∥

∥
Z − Z̃

∥

∥

∥

∞
. (27)

Next, to estimate
∥

∥

∥
Z − Z̃

∥

∥

∥

∞
, we let Q = (qi,j) to denote a matrix with

q1,1 = 12,
q1,2 = 1,
qi,i = 15, i = 2, 3, . . . , n− 1,
qi,i+1 = qi,i−2 = 1, i = 2, 3, . . . , n− 2, and
qi,i−1 = 11, i = 2, 3, . . . , n− 1.

We also let J = (jm,l) to denote a matrix with

j1,1 = −2,
j1,2 = 1,
jm,m = −3, m = 2, 3, . . . , n− 1,
jm,m+1 = 1, m = 2, 3, . . . , n− 2,
jm,m−1 = 3, m = 2, 3, . . . , n− 1, and
jm,m−2 = −1, m = 2, 3, . . . , n− 2.
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Let ψ = 24
h3 (u0,−u0, 0, . . . , 0, un)

T
, then the system (14) can be rewritten in a matrix form

as

QZ =
24

h3
JU + ψ. (28)

From equation (28), we obtain

QZ̃ =
24

h3
JŨ + ψ + τ (h) , (29)

where τ (h) = (τ0 (h) , τ1 (h) , . . . , τn (h))
T

is the error in the third derivative due to the
discretization. On subtracting equation (29) from equation (28), we obtain

Q
(

Z − Z̃
)

=
24

h3
J

(

U − Ũ
)

− τ (h) . (30)

Since u0 = ũ0 and un = ũn, then it is not difficult to show that

τ0 (h) = τn (h) = 0, (31)

and

τi (h) =
3

2
hu(4) (ζi) , (32)

for ζi ∈ (xi, xi+1). From equations (31) and (32), it follows that

‖τ (h)‖∞ ≤
3c1h

2
, (33)

where c1 = max
a≤ζ≤b

∥

∥u(4) (ζ)
∥

∥

∞. Since Q is strictly diagonally dominant matrix, then Q−1

exists,
∥

∥Q−1
∥

∥

∞ ≤ 1
2 , ‖Q‖∞ = 28 and ‖J‖∞ = 8. Together with equations (30) and (33),

we obtain
∥

∥

∥
Z − Z̃

∥

∥

∥

∞
≤

96

h3

∥

∥

∥
U − Ũ

∥

∥

∥

∞
+

3

4
c1h. (34)

From equations (27) and (34), we obtain

‖eD (x)‖∞ ≤ 100
∥

∥

∥
U − Ũ

∥

∥

∥

∞
+

3

4
c1h

4. (35)

In order to estimate
∥

∥

∥
U − Ũ

∥

∥

∥

∞
, we may assume the following result proved by Chawla

and Subramanian [9].

Theorem 1 Assume that u (x) is sufficiently smooth. Then there exist a constant c inde-
pendent of h such that

∥

∥

∥
U − Ũ

∥

∥

∥

∞
≤ ch4.

Therefore, from equation (34) and Theorem 1, we arrived at

‖eD (x)‖∞ ≤ c2h
4, (36)

where c2 = 100c+ 3c1

4 . Finally, from equation (18) together with our findings from equations
(22) and (36), we obtain the following result.
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Theorem 2 With the assumptions of Theorem 1, our proposed quartic spline method S̃ (x)
as described in Section 2, provides order h4 uniformly convergent approximations for the
solution u (x) of problem (1), that is

‖e (x)‖∞ ≤ ‖eI (x)‖∞ + ‖eD (x)‖∞ ≤ c3h
4,

where c3 = 0.0303(b−a)W5

5
+ c2 .

4 Numerical Experiments

In this section, we implemented the proposed method on three examples of the second or-
der BVPs. We denote max

0<i<n−1

∣

∣u
(

xi+1/2

)

− si

(

xi+1/2

)
∣

∣ as the maximum absolute errors

between the nodal points that are tabulated in Table 1 for step size equal to 0.1. We also
compared our results with those obtained by the cubic spline method developed by Chawla
and Subramanian [9].

Problem 1 [10]
Consider the following linear second order BVPs

u′′ (x) =
−2

x
u′ (x) +

2

x2
u (x) +

sin (lnx)

x2
, u (1) = 1, u (2) = 2, 1 ≤ x ≤ 2.

The exact solution for Problem 1 is given by u (x) = c1x+ c2

x2 − 3
10 sin (lnx)− 1

10 cos (lnx),
where c2 = 1

70 (8 − 12 sin (ln 2) − 4 cos (ln 2)) and c1 = 11
10 − c2.

Problem 2 [10]
Consider the following nonlinear second order BVPs

u′′ (x) = 2u (x)
3
, u (−1) =

1

2
, u (0) =

1

3
,−1 ≤ x ≤ 0.

The exact solution for Problem 2 is given by u (x) = 1
x+3 .

Problem 3 [11]
Consider the following second order Bratu type equation

u′′ (x) + 2eu(x) = 0, u (0) = u (1) = 0, 0 ≤ x ≤ 1.

The exact solution for Problem 3 is given by

u (x) = −2 ln

(

cosh (1.17878 (x− 0.5))

cosh (0.589388)

)

.

From Table 1, we observed that our proposed method and the existing cubic spline
method by Chawla and Subramanian [9] are found to have comparable accuracy in solving
Problem 1 and Problem 3. However, our proposed method is more accurate than the existing
cubic spline method in solving Problem 2.
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Table 1: Maximum Absolute Errors for Problem 1, Problem 2 and Problem 3

Problem Methods Maximum absolute errors
1 Chawla and Subramanian [9] 9.82365× 10−6

The proposed method 6.75736× 10−6

2 Chawla and Subramanian [9] 1.68860× 10−5

The proposed method 4.67347× 10−6

3 Chawla and Subramanian [9] 6.26403× 10−4

The proposed method 1.09834× 10−4

5 Conclusion

In this article, we have presented a new quartic spline method for the numerical solution
of second order BVPs in (1). An algorithm to apply the new method is presented as well.
Convergence analysis showed that the order of convergence of the new method is 4. We
have chosen three test problems to evaluate the effectiveness of the proposed method; and
compared with an existing method by Chawla and Subramanian [9] in terms of numerical
accuracy. Numerical experimentations seemed to indicate that the new proposed method
is reliable and may generate more accurate numerical results in solving second order BVPs
in (1).
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