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1 Introduction

Graph decomposition regarding complete graph has attracted the researchers [1–4]. Among
these, complete graph decomposition into Hamiltonian circuit (HC) is attention-grabbing
due to its vast advantages such as analyzing interconnection network in multicomputer [5],
privacy data mining [6], butterfly network [7], and DNA physical mapping [8].

Even though several fast algorithms have been discovered [9–12], the geometric rep-
resentations of the HC have not been presented. This representation is vital to present
the circuits directly. Therefore, the similarities or differences among the circuits can be
perceived. Thus the new method namely Half Butterfly Method (HBM) is introduced by
Maizon [13] to fill the gap. The HBM was inspired by [14] as they introduced Butterfly
Strategy (BS) to solve complete bipartite graph Kn,ndecomposition into one factor. The
detail of geometric representation of HC using HBM can be found from [15].

In this paper, we aim to present the new theoretical work on HBM novel method to
construct the distinct HC in complete graph decomposition. We start with some basic
terminologies and definitions needed along this paper.

2 Basic terminologies and definitions

We follow standard graph theory notations. A graph G consists of a set of vertices V (G)
together with a set of edges E (G). A complete graph with n vertices Kn is a simple
undirected graph where each vertex is adjacent to all the other vertices. A Hamiltonian
circuit (HC) is a circuit that starts and ends at the same vertex, and passes through every
vertex exactly once.

Definition 1 Let G and H be two complete graphs. Suppose the sets of vertices

{x1, x2, x3, . . . , xn} ∈ G and {xa, xb, xc, . . . , xz} ∈ H,
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where 1 ≤ a, b, c, z ≤ n. A function

g =

(
x1

xa

x2

xb

x3

xc

. . .

. . .

xn

xz

)

maps the vertices {x1, x2, x3, . . . , xn} of G to other vertices {xa, xb, xc, . . . , xz} of H where

{xa, xb, xc, . . . , xz} are the images for every element in G. That is, x1 → xa , x2 → xb . . . ,

xn → xz for n ∈ Z+. Then, the mapping is written as a product of transposition

(x1, xa) (x2, xb) . . . (xn, xz) .

Definition 2 Let A and B be two circuits with n vertices. If the mapping of A and B is

(1, a) (2, b) (3, c) . . . (n, z) and (z, n) . . . (c, 3) (b, 2) (a, 1) respectively, where 1 ≤ a, b, c, z ≤ n,

then A and B has an opposite mapping.

Definition 3 Let A be a circuit with direction (x1, x2, x3, . . . , xn−1, xn, x1) . Then, a circuit

B is a mirror image to circuit A if the direction of B is (x1, x2, x3, . . . , xn−1, xn, x1).

Definition 4 Let A and B be two circuits with n vertices. A is isomorphic to B when B

is the mirror image of A.

HBM is a method to decompose Kn into distinct HC with different path. HBM consist
four steps. The first step is creating direction, second step is fix and shift every vertex of
the direction obtained in first step. Meanwhile the next step is finding the mapping and
final step is drawing the HC. The example of construction can found in [13]. Thus in next
section, we discuss the theoretical work on HBM.

3 Some theoretical concepts on HBM

Our proposed HBM yielded the following lemmas, propositions, and theorems.

Lemma 1 There are (n − 1) blocks to create directions for all Kn, n ≥ 3.

Proof Suppose {x1, x2, x3, x4, . . . , xn} are vertices ofKn . Let λ1 be block 1, λ2 be block
2, λ3 be block 3, and λm be the last block. In generating the directions, in each block, we
have the following situation:

λ1 : Vertex x1 is fixed as the starting location and x2 is fixed to be the second location
for the direction.

λ2 : Vertex x1 is fixed as the starting location and x3 is fixed to be the second location
for the direction.

λ3 : Vertex x1 is fixed as the starting location and x4 is fixed to be the second location
for the direction.

.

.

.

λm : Vertex x1 is fixed as the starting location and xn is fixed to be the second location
for the direction.

For each block, a vertex (vertex x1) is fixed to be the starting location. Then, there are
(n− 1) vertices left to be chosen as the second location, consecutively, in each block. Since
there are (n − 1) vertices to be the second location, then there are (n − 1) blocks to create
direction for all Kn, n ≥ 3. 2
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Lemma 2 There are (n − 2) directions in each block.

Proof. By Lemma 1, there are (n − 1) blocks to create the directions. In each block, two
vertices are fixed to be the starting location and the second location. Since there are n

vertices, and two vertices are fixed such that vertex xi and vertex xj for j > i, then there
are (n − 2) vertices left to be the third location for each direction. Thus, (n − 2) directions
are obtained in each block. 2

Lemma 1 and Lemma 2 provide the total number of directions and blocks for a complete
graph. The following propositions and theorems have been provided based on Lemma 1 and
Lemma 2.

Proposition 3 The total number of directions that could be created in Kn, n ≥ 3 is (n −
1)(n − 2).

Proof. From Lemma 1, let λk be the blocks in creating the directions, for 1 ≤ k ≤ n − 1.
Since we have (n − 1) blocks and each block has (n − 2) directions, thus we have

n−1∑

k=1

λk = (n − 2) (n − 1)

directions in Kn.
In other way, we can prove this theorem using the idea of arithmetic sequences as

discussed below. From Lemmas 1 and 2, we have the total number of directions for each
block as shown below.

λ1 = (n − 2) directions

λ1 + λ2 = (n − 2) + (n − 2) = 2 (n − 2)

= (2n − 4) direction

λ1 + λ2 + λ3 = (n − 2) + (n − 2) + (n − 2) = 3 (n − 2)

= (3n − 6) direction

λ1 + λ2 + λ3 + λ4 = (n − 2) + (n − 2) + (n − 2) + (n − 2) = 4 (n − 2)

= (4n − 8) direction

λ1 + λ2 + λ3 + λ4 + λ5 = (n − 2) + (n − 2) + (n − 2) + (n − 2) + (n − 2) = 5 (n − 2)

= (5n − 10) direction

We transform the above results into arithmetic sequence as presented below. Let Ak be the
arithmetic sequence and ak denotes the elements in Ak for 1 ≤ k ≤ n. Then

Ak = {n − 2, 2n− 4, 3n− 6, 4n− 8, 5n− 10, . . . , ak} , (1.1)

where a1 = n − 2 , a2 = 2n − 4 , a3 = 3n − 6, . . . ak . To find the last term of Ak, we
consider the formula

ak = a1 + (k − 1) d (1.2)

where a1 is the first element of Ak, d is the common difference and k is the number of the
element to find. To determine the common difference, d we use

d = ai − aj (1.3)

where i = j + 1 and 1 ≤ i < j ≤ k. Then, by taking any element of Ak in (1.1), we have
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d = n − 2. (1.4)

Here, we take k = n − 1 due to Lemma 1. Therefore, from (1.2), (1.3) and (1.4), we have

ak = a1 + (k − 1) d

an−1 = a1 + ((n − 1) − 1) d = (n − 2) + ((n − 1) − 1) (n − 2)

= (n − 2) + (n − 2) (n − 2) = n2 − 3n + 2 = (n − 2) (n − 1)

Thus, the last element of Ak is [(n − 2) (n − 1)]
th

element, which gives the total number of
directions that can be produced for every Kn for n ≥ 3. 2

Proposition 4 There are n (n − 1) Hamiltonian circuits from each direction in Kn, n ≥ 3.

Proof From Proposition 3, there are (n − 1)(n − 2) directions in Kn. The vertices
x1, x2, x3, . . . , xn in each direction are fixed-and-shifted, where one vertex is fixed and the
remaining vertices are shifted to the left.

Suppose the first direction of Kn is α1 = {x1, x2, x3, x4, . . . , xn}. When each vertex of
α1 is fixed, then we have (n − 1) vertices left to be shifted to the left. Since there are n

vertices to be fixed, then we have
n∑

i=1

(n − 1) = (n − 1) + (n − 1) + (n − 1) + . . . + (n − 1)
︸ ︷︷ ︸

n times

= n (n − 1)

Hamiltonian circuits with similar paths from each direction in Kn. 2

Proposition 5 There are
(n − 1) (n!)

(n − 3)!

Hamiltonian circuits from all directions in Kn,n ≥ 3.

Proof For every Kn, (n − 1)(n − 2) directions are obtained (Proposition 3). For each
direction, when one vertex is fixed, there are (n − 1) vertices left to be shifted to the left.
Since there are n vertices to fix, then we have

n∑

j=1

n−1∑

i=1

(n − 2) (n − 1) =

n−1∑

i=1

[
(n − 2) (n − 1) + (n − 2) (n − 1) + . . . + (n − 2) (n − 1)
︸ ︷︷ ︸

n times

]

=

n−1∑

i=1

(n) (n − 2) (n − 1)

= (n) (n − 2) (n − 1) + (n) (n − 2) (n − 1) + . . . + (n) (n − 2) (n − 1)(n − 1)
︸ ︷︷ ︸

(n−1) times

= (n − 1) (n) (n − 2) (n − 1) = (n − 1) [(n − 2) (n − 1) (n)]

= (n − 1)

[
n!

(n − 3)!

]

=

[
(n − 1) (n!)

(n − 3)!

]

circuits from all directions in Kn. 2

Remark The Hamiltonian circuits produced from all directions in Kn(Proposition 5) are
inclusive of duplicate circuits, i.e. circuits with similar mapping and circuits with opposite
mapping. Thus, the mapping of these circuits will be used for the elimination purposes.
Therefore, Definition 1 are followed to eliminate the similar mappings and opposite map-
pings in order to get the distinct circuits.
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Theorem 6 Let G be a complete graph. Then G is decomposable into 1
2 (n − 1)! distinct

Hamiltonian circuits with different paths for all n ≥ 3.

Proof. Suppose G is a Kn, then there exist n vertices. The total number of Hamiltonian
circuits of Kn is known to be n!. Since there are n vertices, then there are n vertices
available as starting locations. Thus, Kn has n!

n
Hamiltonian circuits with similar paths.

Based on Definition 4 and Lemma 1, we have

n!

n
−

(n − 1)!

2

=
2n! − n(n − 1)!

2n

=
2n! − n!

2n

=
n!

2n

=
(n − 1)!

2

distinct Hamiltonian circuits with different paths from Kn. 2

4 Conclusion

This paper presented the theoretical works on HBM. Our future research is we will attempt
to apply this HBM for the number of different structure HC from Kn.
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