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Abstract A natural number n is called cobalancing number (with cobalancer r) if it
satisfies the Diophantine equation 14+2+---4+n = (n+1)+(n+2)+-- -+(n+r). However,
if for some pair of natural numbers (n,r), 14+2+---+n > (n+1)+(n+2)+---+(n+r)
and equality is achieved after adding a natural number D to the right hand side then
we call n a D-supercobalancing number with D-supercobalaner number r. In this
paper, such numbers are studied for certain values of D.
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1 Introduction

A natural number n is called a balancing number with balancer r [1] if
142+ -+(n—-1)=n+1)+n+2)+ -+ (n+r).

The k' balancing number is denoted by By and Cy = /8B2 + 1 is called the k" Lucas-
balancing number [2]. The balancing and Lucas-balancing numbers satisfy the recurrence
relations By =1, B, =6, B,,11 =6B,—B,_1and C; =3,Cy, =17,C,,41 = 6C,,—Cjp_1,n >
2. On other hand, n is called a cobalancing number with cobalancer r [3] if

142+ +n=0+D)+n+2)+ -+ (n+r).

The nt* cobalancing number is denoted by b,, and cobalancing numbers satisfy the nonho-
mogeneous recurrence by = 0,by = 2,b,41 = 6b, — b,—1 + 2. The Binet forms of B,,C),
and b,, are respectively

a2n _ 6271 a2n 4 6271 a2n71 _ 627171
——  Cp= by —————

1
42 2 42 2
where o = 1++/2 and g=1-— V2. The k" Pell and associated Pell numbers are denoted by
Py and Qg respectively and are defined by means of the recurrence relations P, = 1, P =
2,Phy1=2P,+P,1and Q1 =1,Q2 = 3,Qpn11 = 2Qn + Qn—_1,n > 2. The Binet forms of
Py, Qn are

B, =

p o=, @t

2v/2 2
The following identities will be useful during the proof of some results in the later
sections. To prove the following identities, the readers are advised to refer to [4, 5].
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(i) Bpi1 =3B, £C,

(ii) C, —1=2B, + 2b,

(iv

Cn = Q2n

)
)
(iii) bpy1 —bn = 2B,
)
(v) 2P5, +1=@Q3,.
Definition 1 For a fixed positive integer D, we call a positive integer n, a D-supercobalancing
number if

1424+ +n=n+1D)+n+2)+---+(n+7r)+D (1)

for some natural number r, which we call the D-supercobalancer corresponding to n. If
D is a negative integer, say D = —R , we call n a R-subcobalancing number and r, a
R-subcobalancer corresponding to n.

Since, without D, the right hand side of (1) is less than the left hand side, we prefer the
name supercobalancing number for n. A similar justification applies when D is negative.
Observe that when D = 0, the above definition coincides with that of cobalancing numbers
and hence, we prefer to exclude the case D = 0 from the above definition.

Simplifying the equation (1), we get

n(n+1):(n+r)(7”;+r+1)+D )

solving the above equation for r, we get

[—(1+2n)+ V/8n2 +8n— 8D +1]. (3)

T =

N~

Observe that the value of n will generally depend on the choice of D and the existence
of n is not ascertained for each value of D, e.g., if D = 4, 8n24+8n—8D +1 = 8n? +8n — 31
is not a perfect square for any natural number n. Hence, the choice of D plays a crucial role
in the definition of supercobalancing numbers. The definition of balancing numbers ensures
a solution to the Diophantine equation (1) when D is restricted to balancing number. It is
clear from (3) that when D is a balancing number, then 8n?+8n—8D+1 is a perfect square

at least for D = n. This motivates us to study D-supercobalancing numbers corresponding
toD=B,,n=123,---.

2 Bj-Supercobalancing numbers

2.1 Computation of B;-Supercobalancing numbers

By Definition 1, a natural number n is a Bj-supercobalancing number if

142+ +n=n0+D)+n+2)+---+(n+r)+1 (4)
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for some natural number r, which is the Bj-supercobalancer corresponding to n. Solving
the above equation for r, we get

1
r=—-[-1+2n)+V8n%2+8n—-7

= 5= +2n) +/2(2n +1)* —9].

— DN

Example 1 The following examples suggests that 1, 7,43 and 253 are B;-supercobalancing

numbers with 0, 3,18 and 105 as corresponding Bj-supercobalancers.
(i) 1=1
(i) 1424 +7=8+9+10+1

(iii) 1+2+---443=44+45+---4+61+1
)

(iv) 1+24---+253=254+255+---+358+1

In [5], Behera and Panda accepted 1 as a balancing number with balancer 0. In the same
way, we accept 1 as a Bj-supercobalancing number with B;-supercobalancer 0.

A natural number is said to be pronic number if it is of the form x(z + 1). Note that,
l is a pronic number if and only if 4] + 1 is perfect square. A natural number is said to be
triangular number if it is of the form % Note that m is a triangular number if and only
if 8m + 1 is perfect square. We use the above properties of pronic and triangular numbers
to explore all Bj-supercobalancing numbers.

Theorem 1 For m > 0, 9B,,,Bpm+1 +2 = (3bmy1 + 1)(3bymy1 + 2).

Proof Since
419B,,Byy1 + 2] + 1 =368, Bp1 + 9
=36B,,,(3By + Cyn) +9
= 108BZ, + 36B,,Cyy, + 9
=36B2, + 36B,,,C, +9(8B2, + 1)
=36B2, + 36B,,Cp, +9C2
= (6B +3Cn)?,

9B,,Bmm+1 + 2 is a pronic number. Moreover,

(6B, + 3C,)2 — 1

9By Byt +2 = ;
6B + 3Cy — 1\ [ 6By, +3Cy, — 1
= 5 5 +1).

Since, C,, = 2B,, + 2b, + 1 and b, 41 — b, = 2B,, substituting in the above equation, we get
9B, Bm+1 +2 = (3bmy1 + 1)(Bbymy1 + 2). O
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Theorem 2 For m >0, 9B, Byt + 1= (3B + 3bmy1 + 1)(3By + 3bmy1 + 2).

Proof Since

898, Bmy1 + 1] + 1 = 72B,, Byui1 + 9
=T72Bn(3Bm +Crm) +9
= 21682, + 72B;,Cp, + 9
= 144B2, + 72B,,C,, + 9(8B2, + 1)
= 144B2, + 72B,,C, + 9C2,
= (12B,, + 3C,)?,

9B,,Bmm+1 + 1 is a triangular number. Moreover,

2 _ — —
0B, Byyy1 +1 = (12B,, +;SCm) 1 _ %(12Bm +23Cm 1) (IZBm +23Cm 1 n 1>'

Since, C), = 2B,, + 2b, + 1 and b,,+1 — b, = 2B,,, we have

1
9B Bt +1 = 5 (3B + 3bmsr + 1) (3B + b1 +2). O

It follows from Theorems 1 and 2 that for each natural number m, 9B,,B;,+1 + 1 is a
triangular number while 9B,,, By, 41 + 2 is a pronic number. Hence we have the following
theorem.

Theorem 3 For ecach m > 0, (x,y) = (3bms1 +1,3Bn + 3bimt1 + 1) satisfies the Diophan-

tine equation x(x + 1) = % + 1

Indeed, {3by+1 + 1,3Bym + 3bmt1 + 1 ¢ m > 0} is the complete solution set of the
Diophantine equation z(z +1) = % + 1. The interested readers can verify this claim by

writting x(z+1) = w +1asy? —2(2x +1)? = —9 and solving the later as a generalized
Pell’s equation.

In view of Theorem 3 and equations (2) and (4), one can conclude that for m > 0, the
numbers of the form 3b,,+1 +1 and 3B,,, are Bj-supercobalancing numbers and correspond-
ing Bj-supercobalancers respectively.

2.2 Computation of Bs-supercobalancing numbers

By Definition 1, a natural number n is a Ba-supercobalancing number if
1424+---+n=n+1)+n+2)+---+(n+r)+6 (5)

for some natural number r, which is a Bs-supercobalancer corresponding to n.

Example 2 The following examples suggests that 3, 6 and 8 are Bs-supercobalancing num-
bers with 0,2 and 3 as corresponding Bs-supercobalancers.
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(i) 1+2+3=6
(i) 1+24--+6=T7+8+6
(i) 142+~ +8=9+10+11+6

It follows from equations (3) and (5) that if n is a Bs-supercobalancing number then
the corresponding Bs-supercobalancer is

 —(2n+1)+V8n% +8n — 47
= 5 :

We thus conclude that, if n is a By-supercobalancing number then 222 — 49 is a perfect
square, where z = 2n 4+ 1. One can easily check that there are three classes of solutions
corresponding to the positive values of z satisfying the equation 222 — 49 = »2. One class
of solution corresponds to the case £ = 0 (mod 7) and then, of course, y = 0 (mod 7) and
the equation 222 — 49 = y? can be written as

2 2
() 22 =
7 7
which is a Pell’s equation. It’s solutions are given by (y, x) = (7Q2;—1, TP2—1),1 > 1. Hence

the set P )
{%; 1_1,2,...} (6)

lists a class of Bg-supercobalancing numbers. For finding the other two classes of solutions,
we consider the congruence

x? = 25(22% — 49)(mod 49)
which implies

x = £5v/222 — 49(mod 49).

x4+ 5v2x2 — 49 o x — 5v2x2 — 49
T
49 49

Thus,

is a natural number. Since

2[x:|:5\/2x2—49r+17 [1Ox:|:\/2x2—49 2
49 a 49 ’

it follows that either
10z + /222 — 49 o 10z — /222 — 49
r
49 49

is an even ordered associated Pell number. Since C),, = Q2,, letting

10z £+/222 — 49
o 49 ’

C

we obtain

(49C — 10x)? = 222 — 49,
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which leads to the quadratic equation
20% — 20Cz +49C* +1 =10

whose solutions are x = 5C £ 2B, (C' is the Lucas-balancing number associated with B).
We further observe that
2(5C £+ 2B)? — 49 = (C' 4+ 20B)?.

Thus, the By-supercobalancing numbers are of the form $[5C + 2B — 1]. Hence the set

{713211—1 5CL+2B —1 50 -2B, -1 }
SRl . , 2 =12, ..

lists all the Ba-supercobalancing numbers.

2.3 Computation of Bs-supercobalancing numbers

In view of the Definition 1, a natural number n is a Bs-supercobalancing number if
142+ +n=n0+1)+n+2)+---+(n+r)+204 (7)

for some natural number r, which is the By-supercobalancer corresponding to n.

Example 3 The following examples suggests that 29, 36, 50 and 63 are By-supercobalancing
numbers with 7,11, 18 and 24 as corresponding Bj-supercobalancers.

(i

) 1424 4+29=30+31+---+ 36+ 204
(i) 142+ +36=37+38+---+ 47+ 204
)

)

(iii) 1+2+---+50=514+524---+ 68+ 204

(iv) 1424+ +63=064+65+---+ 87+ 204

It is easy to see that if n is a Bj-supercobalancing number then the corresponding

Bj-supercobalancer is
—(2n+ 1)+ v/8n? + 8n — 1631
r= .
2
Thus, if n is a By-supercobalancing number then 222 — 1633 is a perfect square, where

x = 2n+1. Therefore, computation of Bs-supercobalancing numbers reduces to solving the
Diophantine equation

227 — 1633 = ¢°. (8)

To find all the By-supercobalancing numbers one needs to solve the generalized Pell’s
equation y? — 222 = —1633. The bounds for = corresponding to the fundamental solutions
are given by 1/1633/2 < x < /1633, that is 28 < = < 40, [see [6]]. Thus, we need to
find those integers z in the interval (28, 40) such that 222 — 1633 is a perfect square. This
happens for (z,y) = (29,47) and (31,+17) from which it is easy to see that there are
four fundamental solutions —7 +29v/2, 74 29v/2, —17 4 31v/2 and 17 + 31v/2 respectively.
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Further, Corresponding to each fundamental class there is a class of solutions for = and one
can easily get the solutions as

{29C; + 14B,, 29C, — 14B,, 31C; + 34B;, 31C; — 34B;}

where [ > 1. Hence the following set

{2901 +14B;—1 29C; —14B; —1 31C;+34B,—1 31C; —34B; — 1}
2 ’ 2 ’ 2 ’ 2

lists all the By-supercobalancing numbers.

We will provide a different method which uses modular arithmetic for obtaining these
classes of solutions. During the process we use the fact that az = £b(mod m) implies
a’x? = b?(mod m) for any positive integer m. Thus, any solution of the congruence
ax = +b(mod m) is also a solution of the congruence a?z? = b?(mod m).

Since 222 — 1633 is a perfect square, the congruence
(72)? = 292 (22% — 1633)(mod 1633)
holds and is implied by the pair of congruences (but need not imply since 1633 is not a

prime)
Tr = £29+/22% — 1633(mod 1633). (9)

Thus, if x is any solution of (8) then 22? — 1633 is a perfect square. In view of (9), either

Tx + 29v2x2 — 1633 or Tx —29v/222 — 1633
1633 1633

is a natural number. Since

) [733 +291/222 — 1633] 2 1o [5835 + 7222 — 163372
1633 N 1633 ’

it follows that either

58x + 7v/2x2 — 1633 o 58x — Tv/222 — 1633
T
1633 1633

is an even ordered associated Pell number. Since C,, = Q2,, letting

58z 4+ 7v227 — 1633
- 1633 ’

C

we obtain

(1633C — 582)* = 49(22* — 1633),

which leads to the quadratic equation

222 — 116Cx + 1633C%2 +49 =0
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whose solutions are x = 29C + 14B. We further observe that
2(29C +14B)* — 1633 = (7C + 116 B)*~.

Thus, the numbers of the form %[290 +14B—1] constitutes two classes of By-supercobalancing
numbers.

The other two classes of solutions are obtained by using a similar modular arithmetic
technique. Since 222 — 1633 is a perfect square, the congruence

(17x)% = 31%(22? — 1633)(mod 1633)
holds and is implied by the pair of congruences

172 = +311/222 — 1633(mod 1633).

Thus, either
17x + 31v/2x2 — 1633 o 17z — 31v/222% — 1633
T
1633 1633

is a natural number. Since

172 + 31222 — 163312 62 + 17222 — 163312
2[ 1633 } +1:[ 1633 :

it follows that either

622 + 17v2x2 — 1633 o 62x — 17v/222 — 1633
T
1633 1633

is a even ordered associated Pell number. Since C),, = Q2,, letting

622+ 17222 — 1633
- 1633 ’

C

leads to
(1633C — 62x)* = 289(22% — 1633),

which can be rearranged to form the quadratic equation
2a” — 124Bz + 1633C% 4+ 289 = 0
whose solutions are z = 31C' 4+ 34B. We further observe that
2(31C + 34B)* — 1633 = (17C + 124B).

Thus, these numbers of the form $[31C + 34B — 1] constitute the other two classes of
By-supercobalancing numbers. Hence the set

{2901 +14B;—1 29C; —14B; —1 31C;+34B,—1 31C; —34B;, — 1}
2 ’ 2 ’ 2 ’ 2
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where [ > 1, lists all the Bs-supercobalancing numbers.

From the above discussion, it is clear that, for some values of k, there can be more than
two classes of Bj-supercobalancing numbers. Obtaining all such classes for an arbitrary k
is a difficult task. However, for all values of k, we manage to explore two classes of Bj-
supercobalancing numbers using modular arithmetic. The following lemma will be useful
while proving subsequent theorems.

Lemma 1 For m,l € Z
(i

) (Bma1 — Bm)Ci +2(Bm—1 + Bm)B; — 1 = 2[Biim — Bi—m + bism]
(ii)

)

)

Bm+1 - Bm)cl - 2(Bm71 + Bm)Bl —-1= 2[Bl+m + Blfm + blfm]

(i) (2Bm + Cpn—1)Ci + 2(Cpy — 4Bp_1)B; — 1 = 2[Biym + Bi—ms1 + bi_m1]

(

(

(
(iV (2Bm + Cmfl)cl - 2(Cm - 4mefl)Bl -1= 2[Bl+m71 - Blfm + bl+m71]
Proof We will prove (i) only. Other proofs are similar.

Since,

(Bms1 — Bm)Ci + 2(Bm—1 + Bm)Bi = (2B + Cn)Cy + 2(4B,,, — C) By
= -2(B,Cy, — C1By,) + (CiCy, + 8B, By,)
=-2B_ 1 +Ciim
= —2Bi_, + 2Biim + 2bipm + 1,

the proof of (i) follows. O
Theorem 4 For m > 0, the values of n satisfying the Diophantine equation
1424+ ---+n=n+1)+n+2)+ -+ (n+7r)+ Bopy

for suitable natural numbers r may result in multiple classes. Two such classes are Biim —
Bi_, + bl+m and Biym + Bi—m + bi—m fOT [ >1.

Proof In view of (3), 222 — 8By, — 1 is perfect square, where x = 2n + 1. Since,

(Bmfl + Bm)2 - 2(Bm+1 - Bm)2 = _[832771 + 1]

we have,
(Bm-1 + Bm)*2* = (Bpy1 — Bm)*(22% — 8By, — 1) (mod 8Bay,, + 1). (10)

Hence the values of x satisfying the following congruences

(Bm—1 + B) @ = +(Bpi1 — Bm)V/22% — 8Bay, — 1 (mod 8By, + 1) (11)
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is also a solution of the congruence (10). To obtain two classes of Bay,-supercobalancing
number we solve the congruences (11) which are also solutions of the congruence (10). It is
clear from (11) that either

(Bmfl + Bm)x + (Bm+1 - Bm) \% 22 — 8Bam — 1

8B + 1
or
(Bm—1 + Bp) — (Bmi1 — Bm)v/222 — 8Bap — 1
8B + 1

is a natural number. Since

2
2 |:(Bm1 + Bm)x + (Berl - Bm) \4 222 — SBQm - 1:| +1

8Bam + 1
 [2(Bms1 — Bum)x & (Bm1 + Bu)V22% — 8By — 11"
B 8Bom + 1

it follows that either

2(Bms1 — Bm)® + (Bm—1 + Bm)V22% — 8B — 1

8B + 1
or
2(Bms1 — Bm)® — (Bm—1 + Bm)v22% — 8B — 1
8B + 1

is an even ordered associated Pell number. Since C,, = Q2,, letting

2(Bms1 — Bm)t £ (Bp—1 + Bm)v22% — 8B — 1

C:
8Boy, + 1 ’

we get
[2(Bs1 — Bm)z — (8Bam + 1)C)° = (By_1 + Bm)?(22% — 8Bay, — 1)
which can be transformed to the quadratic equation
22% — 4(Bpmy1 — Bm)Cx + (8Bay, +1)C? + (Byp—1 + Bin)?* =0
whose solutions are © = (B, +1 — By )C £ 2(B,,—1 + By,)B. We further observe that
2[(Bms1 — Bm)C +2(By1 + Bp)B]? —8Bay — 1 = [(Bm_1 + Bim)C +4(By—1 — Bm)B]%.

Thus two classes of Bs,,-supercobalancing numbers are

1 1
5[(Bm+1 — Bn)Ci + 2(Bp—1 + Bim) B — 1], 5[(Bm+1 — B,,)C; — 2(By—1 + Bim)Bi — 1]
for I > 1. In view of Lemma 1 (i) and (ii), the conclusion of the theorem follows. O

Theorem 5 For m > 1, the values of n satisfying the Diophantine equation
1424+ ---+n=mn+1)+n+2)+ -+ (n+7)+ Bom—1

for some natural number r may result in multiple classes. Two such classes are By +
Blferl + blferl and Blerfl - Blfm + lermfl fOTl = 1.
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Proof In view of (3), 22% — 8Ba,,_1 — 1 is perfect square (where z = 2n + 1) and hence
the congruence

(Co — 4By _1)%2% = (2B, 4+ Cu_1)*(20* — 8Bgy,—1 — 1) (mod 8By, 1 + 1),
holds and is implied by the pair of congruences

(Cpp —4By—1) = £(2By, + Cru1)v/222 — 8Bay, 1 — 1 (mod 8By, 1 + 1).

Any solution of the latter congruence is a solution of the former. In view of the latter
congruence

(Cm - 4Bm,1)£€ + (2Bm + Cmfl)\/ZCCQ - SBmel —1
8Bom—1 +1

or

(Cm - 4Bm,1)£€ - (2Bm + Cmfl)\/ZCCQ - SBmel —1
8Bom—1 +1

is a natural number. Since

2
(Cpy — 4Byy—1)x £ 2By, + Cpe1)/22%2 — 8Bayp—1 — 1
8Bom—1 +1

2

+1

2
2By + Coo1)2 % (Coy — AByy—1) /222 — 8By — 1
8Bom—1 +1

it follows that either

22By + Co1 )t + (Cop — 4Byn_1)\/22% — 8Bam_1 — 1
8Bom—1 +1

or

2(2Bym, 4 Cp1)x — (Cy — 4B1—1)/22% — 8Bay—1 — 1
8Bom—1 +1
is an even ordered associated-pell number. Since C,, = @2, letting

2By + Co1)2 % (Co — AByy—1)y/227 — 8Bam_1 — 1
8Bom—1 +1

C:

we get
[2(2Byn + Cp1)z — (8Bam—1 + 1)C) = (Cpp — 4Bp—1)? (222 — 8By — 1)
which can be transformed to the quadratic equation
22% — 4(2B,, + Cru1)Cx + (8Bopy—1 + 1)C? + (Cpy — 4B, 1) =0
whose solutions are z = (2B,,, + Cy,—1)C + 2(Cy, — 4B,,,—1)B. We further observe that
2[(2Bn+Chy1)C+2(Cry—4By 1) B)* =8By 1—1 = [(Cpy—4By, 1) C+4(2B+Cri 1))

Thus two classes of Bs,,—1-supercobalancing numbers are

1 1
5(2B + Con1)C1 4 2(Cry —4B1n1) Bi = 1], 5[(2Bin + Cnt)Cr ~ 2(Cr — 4B 1) By — 1]

for I > 1. In view of Lemma 1 (iii) and (iv), the conclusion of the theorem follows. O
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3 Conclusion

In this paper, we have defined D-supercobalancing numbers n and D-supercobalancer num-
bers r as solutions of the Diophantine equation 1 +2+---+n=Mn+1)+n+2)+ -+
(n+7r)+ D. Since there are infinitely many choices of D, one has ample scope for exploring
D-supercobalancing numbers for many other values of D.

Acknowledgemnt: The authors are thankful to the anonymous referee for his/her valu-
able comments and suggestions which improved the presentation of the paper to a great
extent.
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