Supercobalancing numbers

${ }^{1}$ Ravi Kumar Davala and ${ }^{2}$ G. K. Panda National Institute of Technology, Rourkela, India
e-mail: ${ }^{1}$ davalaravikumar@gmail.com, ${ }^{2}$ gkpandanit@rediffmail.com

Abstract

A natural number n is called cobalancing number (with cobalancer r) if it satisfies the Diophantine equation $1+2+\cdots+n=(n+1)+(n+2)+\cdots+(n+r)$. However, if for some pair of natural numbers $(n, r), 1+2+\cdots+n>(n+1)+(n+2)+\cdots+(n+r)$ and equality is achieved after adding a natural number D to the right hand side then we call n a D-supercobalancing number with D-supercobalaner number r. In this paper, such numbers are studied for certain values of D.

Keywords Balancing numbers, Lucas-balancing numbers, cobalancing numbers, Pell numbers, associated Pell numbers
2010 Mathematics Subject Classification 11B39, 11B83

1 Introduction

A natural number n is called a balancing number with balancer r [1] if

$$
1+2+\cdots+(n-1)=(n+1)+(n+2)+\cdots+(n+r)
$$

The $k^{t h}$ balancing number is denoted by B_{k} and $C_{k}=\sqrt{8 B_{k}^{2}+1}$ is called the $k^{t h}$ Lucasbalancing number [2]. The balancing and Lucas-balancing numbers satisfy the recurrence relations $B_{1}=1, B_{2}=6, B_{n+1}=6 B_{n}-B_{n-1}$ and $C_{1}=3, C_{2}=17, C_{n+1}=6 C_{n}-C_{n-1}, n \geq$ 2. On other hand, n is called a cobalancing number with cobalancer $r[3]$ if

$$
1+2+\cdots+n=(n+1)+(n+2)+\cdots+(n+r)
$$

The $n^{\text {th }}$ cobalancing number is denoted by b_{n} and cobalancing numbers satisfy the nonhomogeneous recurrence $b_{1}=0, b_{2}=2, b_{n+1}=6 b_{n}-b_{n-1}+2$. The Binet forms of B_{n}, C_{n} and b_{n} are respectively

$$
B_{n}=\frac{\alpha^{2 n}-\beta^{2 n}}{4 \sqrt{2}}, C_{n}=\frac{\alpha^{2 n}+\beta^{2 n}}{2}, b_{n}=\frac{\alpha^{2 n-1}-\beta^{2 n-1}}{4 \sqrt{2}}-\frac{1}{2}
$$

where $\alpha=1+\sqrt{2}$ and $\beta=1-\sqrt{2}$. The $k^{t h}$ Pell and associated Pell numbers are denoted by P_{k} and Q_{k} respectively and are defined by means of the recurrence relations $P_{1}=1, P_{2}=$ $2, P_{n+1}=2 P_{n}+P_{n-1}$ and $Q_{1}=1, Q_{2}=3, Q_{n+1}=2 Q_{n}+Q_{n-1}, n \geq 2$. The Binet forms of P_{n}, Q_{n} are

$$
P_{n}=\frac{\alpha^{n}-\beta^{n}}{2 \sqrt{2}}, \quad Q_{n}=\frac{\alpha^{n}+\beta^{n}}{2}
$$

The following identities will be useful during the proof of some results in the later sections. To prove the following identities, the readers are advised to refer to $[4,5]$.
(i) $B_{n \pm 1}=3 B_{n} \pm C_{n}$
(ii) $C_{n}-1=2 B_{n}+2 b_{n}$
(iii) $b_{n+1}-b_{n}=2 B_{n}$
(iv) $C_{n}=Q_{2 n}$
(v) $2 P_{2 n}^{2}+1=Q_{2 n}^{2}$.

Definition 1 For a fixed positive integer D, we call a positive integer n, a D-supercobalancing number if

$$
\begin{equation*}
1+2+\cdots+n=(n+1)+(n+2)+\cdots+(n+r)+D \tag{1}
\end{equation*}
$$

for some natural number r, which we call the D-supercobalancer corresponding to n. If D is a negative integer, say $D=-R$, we call n a R-subcobalancing number and r, a R-subcobalancer corresponding to n.

Since, without D, the right hand side of (1) is less than the left hand side, we prefer the name supercobalancing number for n. A similar justification applies when D is negative. Observe that when $D=0$, the above definition coincides with that of cobalancing numbers and hence, we prefer to exclude the case $D=0$ from the above definition.

Simplifying the equation (1), we get

$$
\begin{equation*}
n(n+1)=\frac{(n+r)(n+r+1)}{2}+D \tag{2}
\end{equation*}
$$

solving the above equation for r, we get

$$
\begin{equation*}
r=\frac{1}{2}\left[-(1+2 n)+\sqrt{8 n^{2}+8 n-8 D+1}\right] . \tag{3}
\end{equation*}
$$

Observe that the value of n will generally depend on the choice of D and the existence of n is not ascertained for each value of D, e.g., if $D=4,8 n^{2}+8 n-8 D+1=8 n^{2}+8 n-31$ is not a perfect square for any natural number n. Hence, the choice of D plays a crucial role in the definition of supercobalancing numbers. The definition of balancing numbers ensures a solution to the Diophantine equation (1) when D is restricted to balancing number. It is clear from (3) that when D is a balancing number, then $8 n^{2}+8 n-8 D+1$ is a perfect square at least for $D=n$. This motivates us to study D-supercobalancing numbers corresponding to $D=B_{n}, n=1,2,3, \cdots$.

$2 \quad B_{k}$-Supercobalancing numbers

2.1 Computation of B_{1}-Supercobalancing numbers

By Definition 1, a natural number n is a B_{1}-supercobalancing number if

$$
\begin{equation*}
1+2+\cdots+n=(n+1)+(n+2)+\cdots+(n+r)+1 \tag{4}
\end{equation*}
$$

for some natural number r, which is the B_{1}-supercobalancer corresponding to n. Solving the above equation for r, we get

$$
\begin{aligned}
r & =\frac{1}{2}\left[-(1+2 n)+\sqrt{8 n^{2}+8 n-7}\right. \\
& =\frac{1}{2}\left[-(1+2 n)+\sqrt{2(2 n+1)^{2}-9}\right] .
\end{aligned}
$$

Example 1 The following examples suggests that 1, 7, 43 and 253 are B_{1}-supercobalancing numbers with $0,3,18$ and 105 as corresponding B_{1}-supercobalancers.
(i) $1=1$
(ii) $1+2+\cdots+7=8+9+10+1$
(iii) $1+2+\cdots+43=44+45+\cdots+61+1$
(iv) $1+2+\cdots+253=254+255+\cdots+358+1$

In [5], Behera and Panda accepted 1 as a balancing number with balancer 0. In the same way, we accept 1 as a B_{1}-supercobalancing number with B_{1}-supercobalancer 0 .

A natural number is said to be pronic number if it is of the form $x(x+1)$. Note that, l is a pronic number if and only if $4 l+1$ is perfect square. A natural number is said to be triangular number if it is of the form $\frac{y(y+1)}{2}$. Note that m is a triangular number if and only if $8 m+1$ is perfect square. We use the above properties of pronic and triangular numbers to explore all B_{1}-supercobalancing numbers.

Theorem 1 For $m \geq 0,9 B_{m} B_{m+1}+2=\left(3 b_{m+1}+1\right)\left(3 b_{m+1}+2\right)$.
Proof Since

$$
\begin{aligned}
4\left[9 B_{m} B_{m+1}+2\right]+1 & =36 B_{m} B_{m+1}+9 \\
& =36 B_{m}\left(3 B_{m}+C_{m}\right)+9 \\
& =108 B_{m}^{2}+36 B_{m} C_{m}+9 \\
& =36 B_{m}^{2}+36 B_{m} C_{m}+9\left(8 B_{m}^{2}+1\right) \\
& =36 B_{m}^{2}+36 B_{m} C_{m}+9 C_{m}^{2} \\
& =\left(6 B_{m}+3 C_{m}\right)^{2}
\end{aligned}
$$

$9 B_{m} B_{m+1}+2$ is a pronic number. Moreover,

$$
\begin{aligned}
9 B_{m} B_{m+1}+2 & =\frac{\left(6 B_{m}+3 C_{m}\right)^{2}-1}{4} \\
& =\left(\frac{6 B_{m}+3 C_{m}-1}{2}\right)\left(\frac{6 B_{m}+3 C_{m}-1}{2}+1\right)
\end{aligned}
$$

Since, $C_{n}=2 B_{n}+2 b_{n}+1$ and $b_{n+1}-b_{n}=2 B_{n}$ substituting in the above equation, we get

$$
9 B_{m} B_{m+1}+2=\left(3 b_{m+1}+1\right)\left(3 b_{m+1}+2\right)
$$

Theorem 2 For $m \geq 0,9 B_{m} B_{m+1}+1=\frac{1}{2}\left(3 B_{m}+3 b_{m+1}+1\right)\left(3 B_{m}+3 b_{m+1}+2\right)$.
Proof Since

$$
\begin{aligned}
8\left[9 B_{m} B_{m+1}+1\right]+1 & =72 B_{m} B_{m+1}+9 \\
& =72 B_{m}\left(3 B_{m}+C_{m}\right)+9 \\
& =216 B_{m}^{2}+72 B_{m} C_{m}+9 \\
& =144 B_{m}^{2}+72 B_{m} C_{m}+9\left(8 B_{m}^{2}+1\right) \\
& =144 B_{m}^{2}+72 B_{m} C_{m}+9 C_{m}^{2} \\
& =\left(12 B_{m}+3 C_{m}\right)^{2}
\end{aligned}
$$

$9 B_{m} B_{m+1}+1$ is a triangular number. Moreover,

$$
9 B_{m} B_{m+1}+1=\frac{\left(12 B_{m}+3 C_{m}\right)^{2}-1}{8}=\frac{1}{2}\left(\frac{12 B_{m}+3 C_{m}-1}{2}\right)\left(\frac{12 B_{m}+3 C_{m}-1}{2}+1\right)
$$

Since, $C_{n}=2 B_{n}+2 b_{n}+1$ and $b_{n+1}-b_{n}=2 B_{n}$, we have

$$
9 B_{m} B_{m+1}+1=\frac{1}{2}\left(3 B_{m}+3 b_{m+1}+1\right)\left(3 B_{m}+3 b_{m+1}+2\right)
$$

It follows from Theorems 1 and 2 that for each natural number $m, 9 B_{m} B_{m+1}+1$ is a triangular number while $9 B_{m} B_{m+1}+2$ is a pronic number. Hence we have the following theorem.

Theorem 3 For each $m \geq 0,(x, y)=\left(3 b_{m+1}+1,3 B_{m}+3 b_{m+1}+1\right)$ satisfies the Diophantine equation $x(x+1)=\frac{y(y+1)}{2}+1$.

Indeed, $\left\{3 b_{m+1}+1,3 B_{m}+3 b_{m+1}+1: m \geq 0\right\}$ is the complete solution set of the Diophantine equation $x(x+1)=\frac{y(y+1)}{2}+1$. The interested readers can verify this claim by writting $x(x+1)=\frac{y(y+1)}{2}+1$ as $y^{2}-2(2 x+1)^{2}=-9$ and solving the later as a generalized Pell's equation.

In view of Theorem 3 and equations (2) and (4), one can conclude that for $m \geq 0$, the numbers of the form $3 b_{m+1}+1$ and $3 B_{m}$ are B_{1}-supercobalancing numbers and corresponding B_{1}-supercobalancers respectively.

2.2 Computation of B_{2}-supercobalancing numbers

By Definition 1, a natural number n is a B_{2}-supercobalancing number if

$$
\begin{equation*}
1+2+\cdots+n=(n+1)+(n+2)+\cdots+(n+r)+6 \tag{5}
\end{equation*}
$$

for some natural number r, which is a B_{2}-supercobalancer corresponding to n.
Example 2 The following examples suggests that 3,6 and 8 are B_{2}-supercobalancing numbers with 0,2 and 3 as corresponding B_{2}-supercobalancers.
(i) $1+2+3=6$
(ii) $1+2+\cdots+6=7+8+6$
(iii) $1+2+\cdots+8=9+10+11+6$

It follows from equations (3) and (5) that if n is a B_{2}-supercobalancing number then the corresponding B_{2}-supercobalancer is

$$
r=\frac{-(2 n+1)+\sqrt{8 n^{2}+8 n-47}}{2}
$$

We thus conclude that, if n is a B_{2}-supercobalancing number then $2 x^{2}-49$ is a perfect square, where $x=2 n+1$. One can easily check that there are three classes of solutions corresponding to the positive values of x satisfying the equation $2 x^{2}-49=y^{2}$. One class of solution corresponds to the case $x \equiv 0(\bmod 7)$ and then, of course, $y \equiv 0(\bmod 7)$ and the equation $2 x^{2}-49=y^{2}$ can be written as

$$
\left(\frac{y}{7}\right)^{2}-2\left(\frac{x}{7}\right)^{2}=-1
$$

which is a Pell's equation. It's solutions are given by $(y, x)=\left(7 Q_{2 l-1}, 7 P_{2 l-1}\right), l \geq 1$. Hence the set

$$
\begin{equation*}
\left\{\frac{7 P_{2 l-1}-1}{2}: l=1,2, \ldots\right\} \tag{6}
\end{equation*}
$$

lists a class of B_{2}-supercobalancing numbers. For finding the other two classes of solutions, we consider the congruence

$$
x^{2} \equiv 25\left(2 x^{2}-49\right)(\bmod 49)
$$

which implies

$$
x \equiv \pm 5 \sqrt{2 x^{2}-49}(\bmod 49)
$$

Thus,

$$
\frac{x+5 \sqrt{2 x^{2}-49}}{49} \text { or } \frac{x-5 \sqrt{2 x^{2}-49}}{49}
$$

is a natural number. Since

$$
2\left[\frac{x \pm 5 \sqrt{2 x^{2}-49}}{49}\right]^{2}+1=\left[\frac{10 x \pm \sqrt{2 x^{2}-49}}{49}\right]^{2}
$$

it follows that either

$$
\frac{10 x+\sqrt{2 x^{2}-49}}{49} \text { or } \frac{10 x-\sqrt{2 x^{2}-49}}{49}
$$

is an even ordered associated Pell number. Since $C_{n}=Q_{2 n}$, letting

$$
C=\frac{10 x \pm \sqrt{2 x^{2}-49}}{49}
$$

we obtain

$$
(49 C-10 x)^{2}=2 x^{2}-49
$$

which leads to the quadratic equation

$$
2 x^{2}-20 C x+49 C^{2}+1=0
$$

whose solutions are $x=5 C \pm 2 B,(C$ is the Lucas-balancing number associated with $B)$. We further observe that

$$
2(5 C \pm 2 B)^{2}-49=(C \pm 20 B)^{2}
$$

Thus, the B_{2}-supercobalancing numbers are of the form $\frac{1}{2}[5 C \pm 2 B-1]$. Hence the set

$$
\left\{\frac{7 P_{2 l-1}-1}{2}, \frac{5 C_{l}+2 B_{l}-1}{2}, \frac{5 C_{l}-2 B_{l}-1}{2}: l=1,2, \ldots\right\}
$$

lists all the B_{2}-supercobalancing numbers.

2.3 Computation of B_{4}-supercobalancing numbers

In view of the Definition 1, a natural number n is a B_{4}-supercobalancing number if

$$
\begin{equation*}
1+2+\cdots+n=(n+1)+(n+2)+\cdots+(n+r)+204 \tag{7}
\end{equation*}
$$

for some natural number r, which is the B_{4}-supercobalancer corresponding to n.
Example 3 The following examples suggests that 29, 36, 50 and 63 are B_{4}-supercobalancing numbers with $7,11,18$ and 24 as corresponding B_{4}-supercobalancers.
(i) $1+2+\cdots+29=30+31+\cdots+36+204$
(ii) $1+2+\cdots+36=37+38+\cdots+47+204$
(iii) $1+2+\cdots+50=51+52+\cdots+68+204$
(iv) $1+2+\cdots+63=64+65+\cdots+87+204$

It is easy to see that if n is a B_{4}-supercobalancing number then the corresponding B_{4}-supercobalancer is

$$
r=\frac{-(2 n+1)+\sqrt{8 n^{2}+8 n-1631}}{2}
$$

Thus, if n is a B_{4}-supercobalancing number then $2 x^{2}-1633$ is a perfect square, where $x=2 n+1$. Therefore, computation of B_{4}-supercobalancing numbers reduces to solving the Diophantine equation

$$
\begin{equation*}
2 x^{2}-1633=y^{2} \tag{8}
\end{equation*}
$$

To find all the B_{4}-supercobalancing numbers one needs to solve the generalized Pell's equation $y^{2}-2 x^{2}=-1633$. The bounds for x corresponding to the fundamental solutions are given by $\sqrt{1633 / 2} \leq x \leq \sqrt{1633}$, that is $28<x<40$, [see [6]]. Thus, we need to find those integers x in the interval $(28,40)$ such that $2 x^{2}-1633$ is a perfect square. This happens for $(x, y)=(29, \pm 7)$ and $(31, \pm 17)$ from which it is easy to see that there are four fundamental solutions $-7+29 \sqrt{2}, 7+29 \sqrt{2},-17+31 \sqrt{2}$ and $17+31 \sqrt{2}$ respectively.

Further, Corresponding to each fundamental class there is a class of solutions for x and one can easily get the solutions as

$$
\left\{29 C_{l}+14 B_{l}, 29 C_{l}-14 B_{l}, 31 C_{l}+34 B_{l}, 31 C_{l}-34 B_{l}\right\}
$$

where $l \geq 1$. Hence the following set

$$
\left\{\frac{29 C_{l}+14 B_{l}-1}{2}, \frac{29 C_{l}-14 B_{l}-1}{2}, \frac{31 C_{l}+34 B_{l}-1}{2}, \frac{31 C_{l}-34 B_{l}-1}{2}\right\}
$$

lists all the B_{4}-supercobalancing numbers.
We will provide a different method which uses modular arithmetic for obtaining these classes of solutions. During the process we use the fact that $a x \equiv \pm b(\bmod m)$ implies $a^{2} x^{2} \equiv b^{2}(\bmod m)$ for any positive integer m. Thus, any solution of the congruence $a x \equiv \pm b(\bmod m)$ is also a solution of the congruence $a^{2} x^{2} \equiv b^{2}(\bmod m)$.

Since $2 x^{2}-1633$ is a perfect square, the congruence

$$
(7 x)^{2} \equiv 29^{2}\left(2 x^{2}-1633\right)(\bmod 1633)
$$

holds and is implied by the pair of congruences (but need not imply since 1633 is not a prime)

$$
\begin{equation*}
7 x \equiv \pm 29 \sqrt{2 x^{2}-1633}(\bmod 1633) \tag{9}
\end{equation*}
$$

Thus, if x is any solution of (8) then $2 x^{2}-1633$ is a perfect square. In view of (9), either

$$
\frac{7 x+29 \sqrt{2 x^{2}-1633}}{1633} \text { or } \frac{7 x-29 \sqrt{2 x^{2}-1633}}{1633}
$$

is a natural number. Since

$$
2\left[\frac{7 x \pm 29 \sqrt{2 x^{2}-1633}}{1633}\right]^{2}+1=\left[\frac{58 x \pm 7 \sqrt{2 x^{2}-1633}}{1633}\right]^{2}
$$

it follows that either

$$
\frac{58 x+7 \sqrt{2 x^{2}-1633}}{1633} \text { or } \frac{58 x-7 \sqrt{2 x^{2}-1633}}{1633}
$$

is an even ordered associated Pell number. Since $C_{n}=Q_{2 n}$, letting

$$
C=\frac{58 x \pm 7 \sqrt{2 x^{2}-1633}}{1633}
$$

we obtain

$$
(1633 C-58 x)^{2}=49\left(2 x^{2}-1633\right)
$$

which leads to the quadratic equation

$$
2 x^{2}-116 C x+1633 C^{2}+49=0
$$

whose solutions are $x=29 C \pm 14 B$. We further observe that

$$
2(29 C \pm 14 B)^{2}-1633=(7 C \pm 116 B)^{2}
$$

Thus, the numbers of the form $\frac{1}{2}[29 C \pm 14 B-1]$ constitutes two classes of B_{4}-supercobalancing numbers.

The other two classes of solutions are obtained by using a similar modular arithmetic technique. Since $2 x^{2}-1633$ is a perfect square, the congruence

$$
(17 x)^{2} \equiv 31^{2}\left(2 x^{2}-1633\right)(\bmod 1633)
$$

holds and is implied by the pair of congruences

$$
17 x \equiv \pm 31 \sqrt{2 x^{2}-1633}(\bmod 1633)
$$

Thus, either

$$
\frac{17 x+31 \sqrt{2 x^{2}-1633}}{1633} \text { or } \frac{17 x-31 \sqrt{2 x^{2}-1633}}{1633}
$$

is a natural number. Since

$$
2\left[\frac{17 x \pm 31 \sqrt{2 x^{2}-1633}}{1633}\right]^{2}+1=\left[\frac{62 x \pm 17 \sqrt{2 x^{2}-1633}}{1633}\right]^{2}
$$

it follows that either

$$
\frac{62 x+17 \sqrt{2 x^{2}-1633}}{1633} \text { or } \frac{62 x-17 \sqrt{2 x^{2}-1633}}{1633}
$$

is a even ordered associated Pell number. Since $C_{n}=Q_{2 n}$, letting

$$
C=\frac{62 x \pm 17 \sqrt{2 x^{2}-1633}}{1633}
$$

leads to

$$
(1633 C-62 x)^{2}=289\left(2 x^{2}-1633\right)
$$

which can be rearranged to form the quadratic equation

$$
2 x^{2}-124 B x+1633 C^{2}+289=0
$$

whose solutions are $x=31 C \pm 34 B$. We further observe that

$$
2(31 C \pm 34 B)^{2}-1633=(17 C \pm 124 B)^{2}
$$

Thus, these numbers of the form $\frac{1}{2}[31 C \pm 34 B-1]$ constitute the other two classes of B_{4}-supercobalancing numbers. Hence the set

$$
\left\{\frac{29 C_{l}+14 B_{l}-1}{2}, \frac{29 C_{l}-14 B_{l}-1}{2}, \frac{31 C_{l}+34 B_{l}-1}{2}, \frac{31 C_{l}-34 B_{l}-1}{2}\right\}
$$

where $l \geq 1$, lists all the B_{4}-supercobalancing numbers.
From the above discussion, it is clear that, for some values of k, there can be more than two classes of B_{k}-supercobalancing numbers. Obtaining all such classes for an arbitrary k is a difficult task. However, for all values of k, we manage to explore two classes of $B_{k^{-}}$ supercobalancing numbers using modular arithmetic. The following lemma will be useful while proving subsequent theorems.

Lemma 1 For $m, l \in \mathbb{Z}$
(i) $\left(B_{m+1}-B_{m}\right) C_{l}+2\left(B_{m-1}+B_{m}\right) B_{l}-1=2\left[B_{l+m}-B_{l-m}+b_{l+m}\right]$
(ii) $\left(B_{m+1}-B_{m}\right) C_{l}-2\left(B_{m-1}+B_{m}\right) B_{l}-1=2\left[B_{l+m}+B_{l-m}+b_{l-m}\right]$
(iii) $\left(2 B_{m}+C_{m-1}\right) C_{l}+2\left(C_{m}-4 B_{m-1}\right) B_{l}-1=2\left[B_{l+m}+B_{l-m+1}+b_{l-m+1}\right]$
(iv) $\left(2 B_{m}+C_{m-1}\right) C_{l}-2\left(C_{m}-4 B_{m-1}\right) B_{l}-1=2\left[B_{l+m-1}-B_{l-m}+b_{l+m-1}\right]$

Proof We will prove (i) only. Other proofs are similar.
Since,

$$
\begin{aligned}
\left(B_{m+1}-B_{m}\right) C_{l}+2\left(B_{m-1}+B_{m}\right) B_{l} & =\left(2 B_{m}+C_{m}\right) C_{l}+2\left(4 B_{m}-C_{m}\right) B_{l} \\
& =-2\left(B_{l} C_{m}-C_{l} B_{m}\right)+\left(C_{l} C_{m}+8 B_{l} B_{m}\right) \\
& =-2 B_{l-m}+C_{l+m} \\
& =-2 B_{l-m}+2 B_{l+m}+2 b_{l+m}+1
\end{aligned}
$$

the proof of (i) follows.
Theorem 4 For $m>0$, the values of n satisfying the Diophantine equation

$$
1+2+\cdots+n=(n+1)+(n+2)+\cdots+(n+r)+B_{2 m}
$$

for suitable natural numbers r may result in multiple classes. Two such classes are $B_{l+m}-$ $B_{l-m}+b_{l+m}$ and $B_{l+m}+B_{l-m}+b_{l-m}$ for $l \geqslant 1$.

Proof In view of (3), $2 x^{2}-8 B_{2 m}-1$ is perfect square, where $x=2 n+1$. Since,

$$
\left(B_{m-1}+B_{m}\right)^{2}-2\left(B_{m+1}-B_{m}\right)^{2}=-\left[8 B_{2 m}+1\right]
$$

we have,

$$
\begin{equation*}
\left(B_{m-1}+B_{m}\right)^{2} x^{2} \equiv\left(B_{m+1}-B_{m}\right)^{2}\left(2 x^{2}-8 B_{2 m}-1\right)\left(\bmod 8 B_{2 m}+1\right) \tag{10}
\end{equation*}
$$

Hence the values of x satisfying the following congruences

$$
\begin{equation*}
\left(B_{m-1}+B_{m}\right) x \equiv \pm\left(B_{m+1}-B_{m}\right) \sqrt{2 x^{2}-8 B_{2 m}-1}\left(\bmod 8 B_{2 m}+1\right) \tag{11}
\end{equation*}
$$

is also a solution of the congruence (10). To obtain two classes of $B_{2 m}$-supercobalancing number we solve the congruences (11) which are also solutions of the congruence (10). It is clear from (11) that either

$$
\frac{\left(B_{m-1}+B_{m}\right) x+\left(B_{m+1}-B_{m}\right) \sqrt{2 x^{2}-8 B_{2 m}-1}}{8 B_{2 m}+1}
$$

or

$$
\frac{\left(B_{m-1}+B_{m}\right) x-\left(B_{m+1}-B_{m}\right) \sqrt{2 x^{2}-8 B_{2 m}-1}}{8 B_{2 m}+1}
$$

is a natural number. Since

$$
\begin{aligned}
& 2\left[\frac{\left(B_{m-1}+B_{m}\right) x \pm\left(B_{m+1}-B_{m}\right) \sqrt{2 x^{2}-8 B_{2 m}-1}}{8 B_{2 m}+1}\right]^{2}+1 \\
= & {\left[\frac{2\left(B_{m+1}-B_{m}\right) x \pm\left(B_{m-1}+B_{m}\right) \sqrt{2 x^{2}-8 B_{2 m}-1}}{8 B_{2 m}+1}\right]^{2} }
\end{aligned}
$$

it follows that either

$$
\frac{2\left(B_{m+1}-B_{m}\right) x+\left(B_{m-1}+B_{m}\right) \sqrt{2 x^{2}-8 B_{2 m}-1}}{8 B_{2 m}+1}
$$

or

$$
\frac{2\left(B_{m+1}-B_{m}\right) x-\left(B_{m-1}+B_{m}\right) \sqrt{2 x^{2}-8 B_{2 m}-1}}{8 B_{2 m}+1}
$$

is an even ordered associated Pell number. Since $C_{n}=Q_{2 n}$, letting

$$
C=\frac{2\left(B_{m+1}-B_{m}\right) x \pm\left(B_{m-1}+B_{m}\right) \sqrt{2 x^{2}-8 B_{2 m}-1}}{8 B_{2 m}+1}
$$

we get

$$
\left[2\left(B_{m+1}-B_{m}\right) x-\left(8 B_{2 m}+1\right) C\right]^{2}=\left(B_{m-1}+B_{m}\right)^{2}\left(2 x^{2}-8 B_{2 m}-1\right)
$$

which can be transformed to the quadratic equation

$$
2 x^{2}-4\left(B_{m+1}-B_{m}\right) C x+\left(8 B_{2 m}+1\right) C^{2}+\left(B_{m-1}+B_{m}\right)^{2}=0
$$

whose solutions are $x=\left(B_{m+1}-B_{m}\right) C \pm 2\left(B_{m-1}+B_{m}\right) B$. We further observe that
$2\left[\left(B_{m+1}-B_{m}\right) C \pm 2\left(B_{m-1}+B_{m}\right) B\right]^{2}-8 B_{2 m}-1=\left[\left(B_{m-1}+B_{m}\right) C \pm 4\left(B_{m-1}-B_{m}\right) B\right]^{2}$.
Thus two classes of $B_{2 m}$-supercobalancing numbers are
$\frac{1}{2}\left[\left(B_{m+1}-B_{m}\right) C_{l}+2\left(B_{m-1}+B_{m}\right) B_{l}-1\right], \frac{1}{2}\left[\left(B_{m+1}-B_{m}\right) C_{l}-2\left(B_{m-1}+B_{m}\right) B_{l}-1\right]$
for $l \geq 1$. In view of Lemma 1 (i) and (ii), the conclusion of the theorem follows.
Theorem 5 For $m>1$, the values of n satisfying the Diophantine equation

$$
1+2+\cdots+n=(n+1)+(n+2)+\cdots+(n+r)+B_{2 m-1}
$$

for some natural number r may result in multiple classes. Two such classes are $B_{l+m}+$ $B_{l-m+1}+b_{l-m+1}$ and $B_{l+m-1}-B_{l-m}+b_{l+m-1}$ for $l \geqslant 1$.

Supercobalancing numbers

Proof In view of (3), $2 x^{2}-8 B_{2 m-1}-1$ is perfect square (where $x=2 n+1$) and hence the congruence

$$
\left(C_{m}-4 B_{m-1}\right)^{2} x^{2} \equiv\left(2 B_{m}+C_{m-1}\right)^{2}\left(2 x^{2}-8 B_{2 m-1}-1\right)\left(\bmod 8 B_{2 m-1}+1\right)
$$

holds and is implied by the pair of congruences

$$
\left(C_{m}-4 B_{m-1}\right) x \equiv \pm\left(2 B_{m}+C_{m-1}\right) \sqrt{2 x^{2}-8 B_{2 m-1}-1}\left(\bmod 8 B_{2 m-1}+1\right)
$$

Any solution of the latter congruence is a solution of the former. In view of the latter congruence

$$
\frac{\left(C_{m}-4 B_{m-1}\right) x+\left(2 B_{m}+C_{m-1}\right) \sqrt{2 x^{2}-8 B_{2 m-1}-1}}{8 B_{2 m-1}+1}
$$

or

$$
\frac{\left(C_{m}-4 B_{m-1}\right) x-\left(2 B_{m}+C_{m-1}\right) \sqrt{2 x^{2}-8 B_{2 m-1}-1}}{8 B_{2 m-1}+1}
$$

is a natural number. Since

$$
\begin{aligned}
& 2\left[\frac{\left(C_{m}-4 B_{m-1}\right) x \pm\left(2 B_{m}+C_{m-1}\right) \sqrt{2 x^{2}-8 B_{2 m-1}-1}}{8 B_{2 m-1}+1}\right]^{2}+1 \\
= & {\left[\frac{2\left(2 B_{m}+C_{m-1}\right) x \pm\left(C_{m}-4 B_{m-1}\right) \sqrt{2 x^{2}-8 B_{2 m-1}-1}}{8 B_{2 m-1}+1}\right]^{2} }
\end{aligned}
$$

it follows that either

$$
\frac{2\left(2 B_{m}+C_{m-1}\right) x+\left(C_{m}-4 B_{m-1}\right) \sqrt{2 x^{2}-8 B_{2 m-1}-1}}{8 B_{2 m-1}+1}
$$

or

$$
\frac{2\left(2 B_{m}+C_{m-1}\right) x-\left(C_{m}-4 B_{m-1}\right) \sqrt{2 x^{2}-8 B_{2 m-1}-1}}{8 B_{2 m-1}+1}
$$

is an even ordered associated-pell number. Since $C_{n}=Q_{2 n}$, letting

$$
C=\frac{2\left(2 B_{m}+C_{m-1}\right) x \pm\left(C_{m}-4 B_{m-1}\right) \sqrt{2 x^{2}-8 B_{2 m-1}-1}}{8 B_{2 m-1}+1}
$$

we get

$$
\left[2\left(2 B_{m}+C_{m-1}\right) x-\left(8 B_{2 m-1}+1\right) C\right]^{2}=\left(C_{m}-4 B_{m-1}\right)^{2}\left(2 x^{2}-8 B_{2 m-1}-1\right)
$$

which can be transformed to the quadratic equation

$$
2 x^{2}-4\left(2 B_{m}+C_{m-1}\right) C x+\left(8 B_{2 m-1}+1\right) C^{2}+\left(C_{m}-4 B_{m-1}\right)^{2}=0
$$

whose solutions are $x=\left(2 B_{m}+C_{m-1}\right) C \pm 2\left(C_{m}-4 B_{m-1}\right) B$. We further observe that $2\left[\left(2 B_{m}+C_{m-1}\right) C \pm 2\left(C_{m}-4 B_{m-1}\right) B\right]^{2}-8 B_{2 m-1}-1=\left[\left(C_{m}-4 B_{m-1}\right) C \pm 4\left(2 B_{m}+C_{m-1}\right)\right]^{2}$. Thus two classes of $B_{2 m-1}$-supercobalancing numbers are
$\frac{1}{2}\left[\left(2 B_{m}+C_{m-1}\right) C_{l}+2\left(C_{m}-4 B_{m-1}\right) B_{l}-1\right], \frac{1}{2}\left[\left(2 B_{m}+C_{m-1}\right) C_{l}-2\left(C_{m}-4 B_{m-1}\right) B_{l}-1\right]$
for $l \geq 1$. In view of Lemma 1 (iii) and (iv), the conclusion of the theorem follows.

3 Conclusion

In this paper, we have defined D-supercobalancing numbers n and D-supercobalancer numbers r as solutions of the Diophantine equation $1+2+\cdots+n=(n+1)+(n+2)+\cdots+$ $(n+r)+D$. Since there are infinitely many choices of D, one has ample scope for exploring D-supercobalancing numbers for many other values of D.

Acknowledgemnt: The authors are thankful to the anonymous referee for his/her valuable comments and suggestions which improved the presentation of the paper to a great extent.

References

[1] Behera, A. and Panda, G. K.On the square roots of triangular numbers. Fib. Quart. 1999. 37(2): 98-105.
[2] Panda, G. K. Some fascinating properties of balancing numbers. In Proc. of Eleventh Internat. Conference on Fibonacci Numbers and Their Applications, Cong. Numerantium. 2009. 194: 185-189.
[3] Panda, G. K. and Ray, P. K. Cobalancing numbers and cobalancers. Int. J. Math. Math. Sci. 2005. 8: 1189-1200.
[4] Ray, P. K., Balancing and cobalancing numbers. National Institute of Technology, Rourkela: Ph.D. Thesis. 2009.
[5] Ray, P. K. Certain matrices associated with balancing and Lucas-balancing numbers. Matematika. 2012. 28(1): 15-22.
[6] Nagel, T. Introduction to Number Theory. New York: Wiley, 1951.

