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Abstract A natural number n is called cobalancing number (with cobalancer r) if it
satisfies the Diophantine equation 1+2+· · ·+n = (n+1)+(n+2)+· · ·+(n+r). However,
if for some pair of natural numbers (n, r), 1+2+· · ·+n > (n+1)+(n+2)+· · ·+(n+r)
and equality is achieved after adding a natural number D to the right hand side then
we call n a D-supercobalancing number with D-supercobalaner number r. In this
paper, such numbers are studied for certain values of D.
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1 Introduction

A natural number n is called a balancing number with balancer r [1] if

1 + 2 + · · ·+ (n − 1) = (n + 1) + (n + 2) + · · ·+ (n + r).

The kth balancing number is denoted by Bk and Ck =
√

8B2
k + 1 is called the kth Lucas-

balancing number [2]. The balancing and Lucas-balancing numbers satisfy the recurrence
relations B1 = 1, B2 = 6, Bn+1 = 6Bn−Bn−1 and C1 = 3, C2 = 17, Cn+1 = 6Cn−Cn−1, n ≥
2. On other hand, n is called a cobalancing number with cobalancer r [3] if

1 + 2 + · · ·+ n = (n + 1) + (n + 2) + · · ·+ (n + r).

The nth cobalancing number is denoted by bn and cobalancing numbers satisfy the nonho-
mogeneous recurrence b1 = 0, b2 = 2, bn+1 = 6bn − bn−1 + 2. The Binet forms of Bn, Cn

and bn are respectively

Bn =
α2n − β2n

4
√

2
, Cn =

α2n + β2n

2
, bn =

α2n−1 − β2n−1

4
√

2
− 1

2

where α = 1+
√

2 and β = 1−
√

2. The kth Pell and associated Pell numbers are denoted by
Pk and Qk respectively and are defined by means of the recurrence relations P1 = 1, P2 =
2, Pn+1 = 2Pn + Pn−1 and Q1 = 1, Q2 = 3, Qn+1 = 2Qn +Qn−1, n ≥ 2. The Binet forms of
Pn, Qn are

Pn =
αn − βn

2
√

2
, Qn =

αn + βn

2
.

The following identities will be useful during the proof of some results in the later
sections. To prove the following identities, the readers are advised to refer to [4, 5].
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(i) Bn±1 = 3Bn ± Cn

(ii) Cn − 1 = 2Bn + 2bn

(iii) bn+1 − bn = 2Bn

(iv) Cn = Q2n

(v) 2P 2
2n + 1 = Q2

2n.

Definition 1 For a fixed positive integer D, we call a positive integer n, a D-supercobalancing
number if

1 + 2 + · · ·+ n = (n + 1) + (n + 2) + · · ·+ (n + r) + D (1)

for some natural number r, which we call the D-supercobalancer corresponding to n. If
D is a negative integer, say D = −R , we call n a R-subcobalancing number and r, a
R-subcobalancer corresponding to n.

Since, without D, the right hand side of (1) is less than the left hand side, we prefer the
name supercobalancing number for n. A similar justification applies when D is negative.
Observe that when D = 0, the above definition coincides with that of cobalancing numbers
and hence, we prefer to exclude the case D = 0 from the above definition.

Simplifying the equation (1), we get

n(n + 1) =
(n + r)(n + r + 1)

2
+ D (2)

solving the above equation for r, we get

r =
1

2
[−(1 + 2n) +

√

8n2 + 8n − 8D + 1 ]. (3)

Observe that the value of n will generally depend on the choice of D and the existence
of n is not ascertained for each value of D, e.g., if D = 4, 8n2 +8n−8D+1 = 8n2 +8n−31
is not a perfect square for any natural number n. Hence, the choice of D plays a crucial role
in the definition of supercobalancing numbers. The definition of balancing numbers ensures
a solution to the Diophantine equation (1) when D is restricted to balancing number. It is
clear from (3) that when D is a balancing number, then 8n2+8n−8D+1 is a perfect square
at least for D = n. This motivates us to study D-supercobalancing numbers corresponding
to D = Bn, n = 1, 2, 3, · · · .

2 Bk-Supercobalancing numbers

2.1 Computation of B1-Supercobalancing numbers

By Definition 1, a natural number n is a B1-supercobalancing number if

1 + 2 + · · ·+ n = (n + 1) + (n + 2) + · · ·+ (n + r) + 1 (4)
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for some natural number r, which is the B1-supercobalancer corresponding to n. Solving
the above equation for r, we get

r =
1

2
[−(1 + 2n) +

√

8n2 + 8n − 7

=
1

2
[−(1 + 2n) +

√

2(2n + 1)2 − 9].

Example 1 The following examples suggests that 1, 7, 43 and 253 are B1-supercobalancing
numbers with 0, 3, 18 and 105 as corresponding B1-supercobalancers.

(i) 1 = 1

(ii) 1 + 2 + · · ·+ 7 = 8 + 9 + 10 + 1

(iii) 1 + 2 + · · ·+ 43 = 44 + 45 + · · ·+ 61 + 1

(iv) 1 + 2 + · · ·+ 253 = 254 + 255 + · · ·+ 358 + 1

In [5], Behera and Panda accepted 1 as a balancing number with balancer 0. In the same
way, we accept 1 as a B1-supercobalancing number with B1-supercobalancer 0.

A natural number is said to be pronic number if it is of the form x(x + 1). Note that,
l is a pronic number if and only if 4l + 1 is perfect square. A natural number is said to be

triangular number if it is of the form y(y+1)
2 . Note that m is a triangular number if and only

if 8m + 1 is perfect square. We use the above properties of pronic and triangular numbers
to explore all B1-supercobalancing numbers.

Theorem 1 For m ≥ 0, 9BmBm+1 + 2 = (3bm+1 + 1)(3bm+1 + 2).

Proof Since

4[9BmBm+1 + 2] + 1 = 36BmBm+1 + 9

= 36Bm(3Bm + Cm) + 9

= 108B2
m + 36BmCm + 9

= 36B2
m + 36BmCm + 9(8B2

m + 1)

= 36B2
m + 36BmCm + 9C2

m

= (6Bm + 3Cm)2,

9BmBm+1 + 2 is a pronic number. Moreover,

9BmBm+1 + 2 =
(6Bm + 3Cm)2 − 1

4

=

(

6Bm + 3Cm − 1

2

)(

6Bm + 3Cm − 1

2
+ 1

)

.

Since, Cn = 2Bn + 2bn + 1 and bn+1 − bn = 2Bn substituting in the above equation, we get

9BmBm+1 + 2 = (3bm+1 + 1)(3bm+1 + 2). �
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Theorem 2 For m ≥ 0, 9BmBm+1 + 1 = 1
2 (3Bm + 3bm+1 + 1)(3Bm + 3bm+1 + 2).

Proof Since

8[9BmBm+1 + 1] + 1 = 72BmBm+1 + 9

= 72Bm(3Bm + Cm) + 9

= 216B2
m + 72BmCm + 9

= 144B2
m + 72BmCm + 9(8B2

m + 1)

= 144B2
m + 72BmCm + 9C2

m

= (12Bm + 3Cm)2,

9BmBm+1 + 1 is a triangular number. Moreover,

9BmBm+1 + 1 =
(12Bm + 3Cm)2 − 1

8
=

1

2

(

12Bm + 3Cm − 1

2

)(

12Bm + 3Cm − 1

2
+ 1

)

.

Since, Cn = 2Bn + 2bn + 1 and bn+1 − bn = 2Bn, we have

9BmBm+1 + 1 =
1

2
(3Bm + 3bm+1 + 1)(3Bm + 3bm+1 + 2). �

It follows from Theorems 1 and 2 that for each natural number m, 9BmBm+1 + 1 is a
triangular number while 9BmBm+1 + 2 is a pronic number. Hence we have the following
theorem.

Theorem 3 For each m ≥ 0, (x, y) = (3bm+1 +1, 3Bm +3bm+1 +1) satisfies the Diophan-

tine equation x(x + 1) = y(y+1)
2 + 1.

Indeed, {3bm+1 + 1, 3Bm + 3bm+1 + 1 : m ≥ 0} is the complete solution set of the

Diophantine equation x(x+1) = y(y+1)
2 +1. The interested readers can verify this claim by

writting x(x+1) = y(y+1)
2 +1 as y2 −2(2x+1)2 = −9 and solving the later as a generalized

Pell’s equation.

In view of Theorem 3 and equations (2) and (4), one can conclude that for m ≥ 0, the
numbers of the form 3bm+1 +1 and 3Bm are B1-supercobalancing numbers and correspond-
ing B1-supercobalancers respectively.

2.2 Computation of B2-supercobalancing numbers

By Definition 1, a natural number n is a B2-supercobalancing number if

1 + 2 + · · ·+ n = (n + 1) + (n + 2) + · · ·+ (n + r) + 6 (5)

for some natural number r, which is a B2-supercobalancer corresponding to n.

Example 2 The following examples suggests that 3, 6 and 8 are B2-supercobalancing num-
bers with 0, 2 and 3 as corresponding B2-supercobalancers.
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(i) 1 + 2 + 3 = 6

(ii) 1 + 2 + · · ·+ 6 = 7 + 8 + 6

(iii) 1 + 2 + · · ·+ 8 = 9 + 10 + 11 + 6

It follows from equations (3) and (5) that if n is a B2-supercobalancing number then
the corresponding B2-supercobalancer is

r =
−(2n + 1) +

√
8n2 + 8n − 47

2
.

We thus conclude that, if n is a B2-supercobalancing number then 2x2 − 49 is a perfect
square, where x = 2n + 1. One can easily check that there are three classes of solutions
corresponding to the positive values of x satisfying the equation 2x2 − 49 = y2. One class
of solution corresponds to the case x ≡ 0 (mod 7) and then, of course, y ≡ 0 (mod 7) and
the equation 2x2 − 49 = y2 can be written as

(y

7

)2

− 2
(x

7

)2

= −1,

which is a Pell’s equation. It’s solutions are given by (y, x) = (7Q2l−1, 7P2l−1), l ≥ 1. Hence
the set

{

7P2l−1 − 1

2
: l = 1, 2, . . .

}

(6)

lists a class of B2-supercobalancing numbers. For finding the other two classes of solutions,
we consider the congruence

x2 ≡ 25(2x2 − 49)(mod 49)

which implies

x ≡ ±5
√

2x2 − 49(mod 49).

Thus,
x + 5

√
2x2 − 49

49
or

x − 5
√

2x2 − 49

49

is a natural number. Since

2
[x ± 5

√
2x2 − 49

49

]2

+ 1 =
[10x ±

√
2x2 − 49

49

]2

,

it follows that either
10x +

√
2x2 − 49

49
or

10x −
√

2x2 − 49

49

is an even ordered associated Pell number. Since Cn = Q2n, letting

C =
10x ±

√
2x2 − 49

49
,

we obtain
(49C − 10x)2 = 2x2 − 49,
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which leads to the quadratic equation

2x2 − 20Cx + 49C2 + 1 = 0

whose solutions are x = 5C ± 2B, (C is the Lucas-balancing number associated with B).
We further observe that

2(5C ± 2B)2 − 49 = (C ± 20B)2.

Thus, the B2-supercobalancing numbers are of the form 1
2 [5C ± 2B − 1]. Hence the set

{

7P2l−1 − 1

2
,
5Cl + 2Bl − 1

2
,
5Cl − 2Bl − 1

2
: l = 1, 2, . . .

}

lists all the B2-supercobalancing numbers.

2.3 Computation of B4-supercobalancing numbers

In view of the Definition 1, a natural number n is a B4-supercobalancing number if

1 + 2 + · · ·+ n = (n + 1) + (n + 2) + · · ·+ (n + r) + 204 (7)

for some natural number r, which is the B4-supercobalancer corresponding to n.

Example 3 The following examples suggests that 29, 36, 50 and 63 are B4-supercobalancing
numbers with 7, 11, 18 and 24 as corresponding B4-supercobalancers.

(i) 1 + 2 + · · ·+ 29 = 30 + 31 + · · ·+ 36 + 204

(ii) 1 + 2 + · · ·+ 36 = 37 + 38 + · · ·+ 47 + 204

(iii) 1 + 2 + · · ·+ 50 = 51 + 52 + · · ·+ 68 + 204

(iv) 1 + 2 + · · ·+ 63 = 64 + 65 + · · ·+ 87 + 204

It is easy to see that if n is a B4-supercobalancing number then the corresponding
B4-supercobalancer is

r =
−(2n + 1) +

√
8n2 + 8n − 1631

2
.

Thus, if n is a B4-supercobalancing number then 2x2 − 1633 is a perfect square, where
x = 2n+1. Therefore, computation of B4-supercobalancing numbers reduces to solving the
Diophantine equation

2x2 − 1633 = y2 . (8)

To find all the B4-supercobalancing numbers one needs to solve the generalized Pell’s
equation y2 − 2x2 = −1633. The bounds for x corresponding to the fundamental solutions
are given by

√

1633/2 ≤ x ≤
√

1633, that is 28 < x < 40, [see [6]]. Thus, we need to
find those integers x in the interval (28, 40) such that 2x2 − 1633 is a perfect square. This
happens for (x, y) = (29,±7) and (31,±17) from which it is easy to see that there are
four fundamental solutions −7 + 29

√
2, 7 + 29

√
2, −17 + 31

√
2 and 17 + 31

√
2 respectively.
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Further, Corresponding to each fundamental class there is a class of solutions for x and one
can easily get the solutions as

{29Cl + 14Bl, 29Cl − 14Bl, 31Cl + 34Bl, 31Cl − 34Bl}

where l ≥ 1. Hence the following set

{

29Cl + 14Bl − 1

2
,
29Cl − 14Bl − 1

2
,
31Cl + 34Bl − 1

2
,
31Cl − 34Bl − 1

2

}

lists all the B4-supercobalancing numbers.

We will provide a different method which uses modular arithmetic for obtaining these
classes of solutions. During the process we use the fact that ax ≡ ±b(mod m) implies
a2x2 ≡ b2(mod m) for any positive integer m. Thus, any solution of the congruence
ax ≡ ±b(mod m) is also a solution of the congruence a2x2 ≡ b2(mod m).

Since 2x2 − 1633 is a perfect square, the congruence

(7x)2 ≡ 292(2x2 − 1633)(mod 1633)

holds and is implied by the pair of congruences (but need not imply since 1633 is not a
prime)

7x ≡ ±29
√

2x2 − 1633(mod 1633). (9)

Thus, if x is any solution of (8) then 2x2 − 1633 is a perfect square. In view of (9), either

7x + 29
√

2x2 − 1633

1633
or

7x − 29
√

2x2 − 1633

1633

is a natural number. Since

2
[7x ± 29

√
2x2 − 1633

1633

]2

+ 1 =
[58x± 7

√
2x2 − 1633

1633

]2

,

it follows that either

58x + 7
√

2x2 − 1633

1633
or

58x − 7
√

2x2 − 1633

1633

is an even ordered associated Pell number. Since Cn = Q2n, letting

C =
58x ± 7

√
2x2 − 1633

1633
,

we obtain
(1633C − 58x)2 = 49(2x2 − 1633),

which leads to the quadratic equation

2x2 − 116Cx + 1633C2 + 49 = 0
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whose solutions are x = 29C ± 14B. We further observe that

2(29C ± 14B)2 − 1633 = (7C ± 116B)2.

Thus, the numbers of the form 1
2 [29C±14B−1] constitutes two classes of B4-supercobalancing

numbers.

The other two classes of solutions are obtained by using a similar modular arithmetic
technique. Since 2x2 − 1633 is a perfect square, the congruence

(17x)2 ≡ 312(2x2 − 1633)(mod 1633)

holds and is implied by the pair of congruences

17x ≡ ±31
√

2x2 − 1633(mod 1633).

Thus, either

17x + 31
√

2x2 − 1633

1633
or

17x − 31
√

2x2 − 1633

1633

is a natural number. Since

2
[17x ± 31

√
2x2 − 1633

1633

]2

+ 1 =
[62x± 17

√
2x2 − 1633

1633

]2

,

it follows that either

62x + 17
√

2x2 − 1633

1633
or

62x − 17
√

2x2 − 1633

1633

is a even ordered associated Pell number. Since Cn = Q2n, letting

C =
62x± 17

√
2x2 − 1633

1633
,

leads to

(1633C − 62x)2 = 289(2x2 − 1633),

which can be rearranged to form the quadratic equation

2x2 − 124Bx + 1633C2 + 289 = 0

whose solutions are x = 31C ± 34B. We further observe that

2(31C ± 34B)2 − 1633 = (17C ± 124B)2.

Thus, these numbers of the form 1
2 [31C ± 34B − 1] constitute the other two classes of

B4-supercobalancing numbers. Hence the set

{

29Cl + 14Bl − 1

2
,
29Cl − 14Bl − 1

2
,
31Cl + 34Bl − 1

2
,
31Cl − 34Bl − 1

2

}
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where l ≥ 1, lists all the B4-supercobalancing numbers.

From the above discussion, it is clear that, for some values of k, there can be more than
two classes of Bk-supercobalancing numbers. Obtaining all such classes for an arbitrary k
is a difficult task. However, for all values of k, we manage to explore two classes of Bk-
supercobalancing numbers using modular arithmetic. The following lemma will be useful
while proving subsequent theorems.

Lemma 1 For m, l ∈ Z

(i) (Bm+1 − Bm)Cl + 2(Bm−1 + Bm)Bl − 1 = 2[Bl+m − Bl−m + bl+m ]

(ii) (Bm+1 − Bm)Cl − 2(Bm−1 + Bm)Bl − 1 = 2[Bl+m + Bl−m + bl−m]

(iii) (2Bm + Cm−1)Cl + 2(Cm − 4Bm−1)Bl − 1 = 2[Bl+m + Bl−m+1 + bl−m+1 ]

(iv) (2Bm + Cm−1)Cl − 2(Cm − 4Bm−1)Bl − 1 = 2[Bl+m−1 − Bl−m + bl+m−1 ]

Proof We will prove (i) only. Other proofs are similar.
Since,

(Bm+1 − Bm)Cl + 2(Bm−1 + Bm)Bl = (2Bm + Cm)Cl + 2(4Bm − Cm)Bl

= −2(BlCm − ClBm) + (ClCm + 8BlBm)

= −2Bl−m + Cl+m

= −2Bl−m + 2Bl+m + 2bl+m + 1,

the proof of (i) follows. �

Theorem 4 For m > 0, the values of n satisfying the Diophantine equation

1 + 2 + · · ·+ n = (n + 1) + (n + 2) + · · ·+ (n + r) + B2m

for suitable natural numbers r may result in multiple classes. Two such classes are Bl+m −
Bl−m + bl+m and Bl+m + Bl−m + bl−m for l > 1.

Proof In view of (3), 2x2 − 8B2m − 1 is perfect square, where x = 2n + 1. Since,

(Bm−1 + Bm)2 − 2(Bm+1 − Bm)2 = −[8B2m + 1]

we have,

(Bm−1 + Bm)2x2 ≡ (Bm+1 − Bm)2(2x2 − 8B2m − 1) (mod 8B2m + 1). (10)

Hence the values of x satisfying the following congruences

(Bm−1 + Bm) x ≡ ±(Bm+1 − Bm)
√

2x2 − 8B2m − 1 (mod 8B2m + 1) (11)
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is also a solution of the congruence (10). To obtain two classes of B2m-supercobalancing
number we solve the congruences (11) which are also solutions of the congruence (10). It is
clear from (11) that either

(Bm−1 + Bm)x + (Bm+1 − Bm)
√

2x2 − 8B2m − 1

8B2m + 1

or
(Bm−1 + Bm)x − (Bm+1 − Bm)

√
2x2 − 8B2m − 1

8B2m + 1

is a natural number. Since

2

[

(Bm−1 + Bm)x ± (Bm+1 − Bm)
√

2x2 − 8B2m − 1

8B2m + 1

]2

+ 1

=

[

2(Bm+1 − Bm)x ± (Bm−1 + Bm)
√

2x2 − 8B2m − 1

8B2m + 1

]2

it follows that either

2(Bm+1 − Bm)x + (Bm−1 + Bm)
√

2x2 − 8B2m − 1

8B2m + 1

or
2(Bm+1 − Bm)x − (Bm−1 + Bm)

√
2x2 − 8B2m − 1

8B2m + 1

is an even ordered associated Pell number. Since Cn = Q2n, letting

C =
2(Bm+1 − Bm)x ± (Bm−1 + Bm)

√
2x2 − 8B2m − 1

8B2m + 1
,

we get

[2(Bm+1 − Bm)x − (8B2m + 1)C]
2

= (Bm−1 + Bm)2(2x2 − 8B2m − 1)

which can be transformed to the quadratic equation

2x2 − 4(Bm+1 − Bm)Cx + (8B2m + 1)C2 + (Bm−1 + Bm)2 = 0

whose solutions are x = (Bm+1 − Bm)C ± 2(Bm−1 + Bm)B. We further observe that

2[(Bm+1 −Bm)C ± 2(Bm−1 +Bm)B]2 − 8B2m − 1 = [(Bm−1 + Bm)C ± 4(Bm−1 −Bm)B]2.

Thus two classes of B2m-supercobalancing numbers are

1

2
[(Bm+1 − Bm)Cl + 2(Bm−1 + Bm)Bl − 1],

1

2
[(Bm+1 − Bm)Cl − 2(Bm−1 + Bm)Bl − 1]

for l ≥ 1. In view of Lemma 1 (i) and (ii), the conclusion of the theorem follows. �

Theorem 5 For m > 1, the values of n satisfying the Diophantine equation

1 + 2 + · · ·+ n = (n + 1) + (n + 2) + · · ·+ (n + r) + B2m−1

for some natural number r may result in multiple classes. Two such classes are Bl+m +
Bl−m+1 + bl−m+1 and Bl+m−1 − Bl−m + bl+m−1 for l > 1.
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Proof In view of (3), 2x2 − 8B2m−1 − 1 is perfect square (where x = 2n + 1) and hence
the congruence

(Cm − 4Bm−1)
2x2 ≡ (2Bm + Cm−1)

2(2x2 − 8B2m−1 − 1) (mod 8B2m−1 + 1),

holds and is implied by the pair of congruences

(Cm − 4Bm−1) x ≡ ±(2Bm + Cm−1)
√

2x2 − 8B2m−1 − 1 (mod 8B2m−1 + 1).

Any solution of the latter congruence is a solution of the former. In view of the latter
congruence

(Cm − 4Bm−1)x + (2Bm + Cm−1)
√

2x2 − 8B2m−1 − 1

8B2m−1 + 1
or

(Cm − 4Bm−1)x − (2Bm + Cm−1)
√

2x2 − 8B2m−1 − 1

8B2m−1 + 1

is a natural number. Since

2

[

(Cm − 4Bm−1)x ± (2Bm + Cm−1)
√

2x2 − 8B2m−1 − 1

8B2m−1 + 1

]2

+ 1

=

[

2(2Bm + Cm−1)x ± (Cm − 4Bm−1)
√

2x2 − 8B2m−1 − 1

8B2m−1 + 1

]2

it follows that either

2(2Bm + Cm−1)x + (Cm − 4Bm−1)
√

2x2 − 8B2m−1 − 1

8B2m−1 + 1

or
2(2Bm + Cm−1)x − (Cm − 4Bm−1)

√

2x2 − 8B2m−1 − 1

8B2m−1 + 1

is an even ordered associated-pell number. Since Cn = Q2n, letting

C =
2(2Bm + Cm−1)x ± (Cm − 4Bm−1)

√

2x2 − 8B2m−1 − 1

8B2m−1 + 1

we get

[2(2Bm + Cm−1)x − (8B2m−1 + 1)C]
2

= (Cm − 4Bm−1)
2(2x2 − 8B2m−1 − 1)

which can be transformed to the quadratic equation

2x2 − 4(2Bm + Cm−1)Cx + (8B2m−1 + 1)C2 + (Cm − 4Bm−1)
2 = 0

whose solutions are x = (2Bm + Cm−1)C ± 2(Cm − 4Bm−1)B. We further observe that

2[(2Bm+Cm−1)C±2(Cm−4Bm−1)B]2−8B2m−1−1 = [(Cm−4Bm−1)C±4(2Bm+Cm−1)]
2.

Thus two classes of B2m−1-supercobalancing numbers are

1

2
[(2Bm +Cm−1)Cl +2(Cm − 4Bm−1)Bl − 1],

1

2
[(2Bm + Cm−1)Cl − 2(Cm − 4Bm−1)Bl − 1]

for l ≥ 1. In view of Lemma 1 (iii) and (iv), the conclusion of the theorem follows. �
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3 Conclusion

In this paper, we have defined D-supercobalancing numbers n and D-supercobalancer num-
bers r as solutions of the Diophantine equation 1 + 2 + · · ·+ n = (n + 1) + (n + 2) + · · ·+
(n+ r)+D. Since there are infinitely many choices of D, one has ample scope for exploring
D-supercobalancing numbers for many other values of D.

Acknowledgemnt: The authors are thankful to the anonymous referee for his/her valu-
able comments and suggestions which improved the presentation of the paper to a great
extent.
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