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Abstract In this paper, we initiate the study of spectrum of the commuting graphs

of finite non-abelian groups. We first compute the spectrum of this graph for several

classes of finite groups, in particular AC-groups. We show that the commuting graphs

of finite non-abelian AC-groups are integral. We also show that the commuting graph

of a finite non-abelian group G is integral if G is not isomorphic to the symmetric

group of degree 4 and the commuting graph of G is planar. Further, it is shown that

the commuting graph of G is integral if its commuting graph is toroidal.
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1 Introduction

Let G be a finite group with centre Z(G). The commuting graph of a non-abelian group G,
denoted by ΓG, is a simple undirected graph whose vertex set is G \Z(G), and two vertices
x and y are adjacent if and only if xy = yx. Various aspects of commuting graphs of
different finite groups can be found in [1–6]. In [7], the authors have studied the Laplacian
spectrum of non-commuting graphs of some classes of finite non-abelian groups. In this
paper, we initiate the study of spectrum of commuting graphs of finite non-abelian groups.
Recall that the spectrum of a graph G denoted by Spec(G) is the set {λk1

1 , λk2

2 , . . . , λkn
n },

where λ1, λ2, . . . , λn are the eigenvalues of the adjacency matrix of G with multiplicities
k1, k2, . . . , kn, respectively. A graph G is called integral if Spec(G) contains only integers.
It is well known that the complete graph Kn on n vertices is integral. Moreover, if G is the
disjoint union of some complete graphs then also it is integral. The notion of integral graph
was introduced by Harary and Schwenk [8] in the year 1974. A very impressive survey on
integral graphs can be found in [9].

We observe that the commuting graph of a non abelian finite AC-group is disjoint union
of some complete graphs. Therefore, commuting graphs of such groups are integral. In
general it is difficult to classify all finite non-abelian groups whose commuting graphs are
integral. As applications of our results together with some other known results, in Section
3, we show that the commuting graph of a finite non-abelian group G is integral if G is
not isomorphic to S4, the symmetric group of degree 4, and the commuting graph of G is
planar. We also show that the commuting graph of a finite non-abelian group G is integral
if the commuting graph of G is toroidal. Recall that the genus of a graph is the smallest
non-negative integer n such that the graph can be embedded on the surface obtained by
attaching n handles to a sphere. A graph is said to be planar or toroidal if the genus of the
graph is zero or one respectively. It is worth mentioning that Afkhami et al. [10] and Das
et al. [11] have classified all finite non-abelian groups whose commuting graphs are planar
or toroidal recently.
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2 Computing spectrum

It is well known that the complete graph Kn on n vertices is integral and Spec(Kn) is given
by {(−1)n−1, (n − 1)1}. Further, if G = Km1

t Km2
t · · · t Kml

, where Kmi
are complete

graphs on mi vertices for 1 ≤ i ≤ l, then

Spec(G) = {(−1)

l
P

i=1

mi−l
, (m1 − 1)1, (m2 − 1)1, . . . , (ml − 1)1}. (1)

If m1 = m2 = · · · = ml = m then we write G = lKm and in that case Spec(G) =
{(−1)l(m−1), (m− 1)l}.

In this section, we compute the spectrum of the commuting graphs of different families of
finite non-abelian AC-groups. A group G is called an AC-group if CG(x) := {y ∈ G : xy =
yx} is abelian for all x ∈ G \ Z(G). Various aspects of AC-groups can be found in [11–13].
The following lemma plays an important role in computing spectrum of commuting graphs
of AC-groups.

Lemma 2.1 Let G be a finite non-abelian AC-group. Then the commuting graph of G is

given by

ΓG =
nt

i=1
K|Xi|−|Z(G)|

where X1, . . . , Xn are the distinct centralizers of non-central elements of G.

Proof Let G be a finite non-abelian AC-group and X1, . . . , Xn be the distinct centralizers
of non-central elements of G. Let Xi = CG(xi) where xi ∈ G \ Z(G) and 1 ≤ i ≤ n.
Let x, y ∈ Xi \ Z(G) for some i and x 6= y then, since G an AC-group, there is an edge
between x and y in the commuting graph of G. Suppose that x ∈ (Xi ∩ Xj) \ Z(G) for
some 1 ≤ i 6= j ≤ n. Then [x, xi] = 1 and [x, xj] = 1. Hence, by Lemma 3.6 of [12]
we have CG(x) = CG(xi) = CG(xj), a contradiction. Therefore, Xi ∩ Xj = Z(G) for any

1 ≤ i 6= j ≤ n. This shows that ΓG =
n
t

i=1
K|Xi|−|Z(G)|. 2

Theorem 2.1 Let G be a finite non-abelian AC-group. Then the spectrum of the commut-

ing graph of G is given by

{(−1)

n
P

i=1

|Xi|−n(|Z(G)|+1)
, (|X1| − |Z(G)| − 1)1, . . . , (|Xn| − |Z(G)| − 1)1}

where X1, . . . , Xn are the distinct centralizers of non-central elements of G.

Proof The proof follows from Lemma 2.1 and (1). 2

Corollary 2.1 Let G be a finite non-abelian AC-group and A be any finite abelian group.

Then the spectrum of the commuting graph of G × A is given by

{(−1)

n

|A|
P

i=1

(|Xi|−n|Z(G)|)−n
, (|A|(|X1| − |Z(G)|)−1))1, . . . ,

(|A|(|Xn| − |Z(G)|) − 1))1}

where X1, . . . , Xn are the distinct centralizers of non-central elements of G.
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Proof It is easy to see that Z(G × A) = Z(G) × A and X1 × A, X2 × A, . . . , Xn × A are
the distinct centralizers of non-central elements of G × A. Therefore, if G is an AC-group
then G × A is also an AC-group. Hence, the result follows from Theorem 2.1. 2

Now we compute the spectrum of the commuting graphs of some particular families of
AC-groups. We begin with the well-known family of quasidihedral groups.

Proposition 2.1 The spectrum of the commuting graph of the quasidihedral group QD2n =
〈a, b : a2n−1

= b2 = 1, bab−1 = a2n−2−1〉, where n ≥ 4, is given by

Spec(ΓQD2n ) = {(−1)2
n−2n−2−3, 12n−2

, (2n−1 − 3)1}.

Proof It is well-known that Z(QD2n) = {1, a2n−2}. Also

CQD2n (a) = CQD2n (ai) = 〈a〉 for 1 ≤ i ≤ 2n−1 − 1, i 6= 2n−2

and
CQD2n (ajb) = {1, a2n−2

, aib, ai+2n−2

b} for 1 ≤ j ≤ 2n−2

are the only centralizers of non-central elements of QD2n . Note that these centralizers are
abelian subgroups of QD2n . Therefore, by Lemma 2.1

ΓQD2n = K|CQD2n (a)\Z(QD2n)| t (
2n−2

t
j=1

K|CQD2n (ajb)\Z(QD2n)|).

That is, ΓQD2n = K2n−1−2 t 2n−2K2, since |CQD2n (a)| = 2n−1, |CQD2n (ajb)| = 4 for
1 ≤ j ≤ 2n−2 and |Z(QD2n)| = 2. Hence, the result follows from (1). 2

Proposition 2.2 The spectrum of the commuting graph of the projective special linear

group PSL(2, 2k), where k ≥ 2, is given by

{(−1)2
3k−22k−2k+1−2, (2k − 1)2

k−1(2k−1), (2k − 2)2
k+1, (2k − 3)2

k−1(2k+1)}.

Proof We know that PSL(2, 2k) is a non-abelian group of order 2k(22k − 1) with triv-
ial center. By Proposition 3.21 of [12], the set of centralizers of non-trivial elements of
PSL(2, 2k) is given by

{xPx−1, xAx−1, xBx−1 : x ∈ PSL(2, 2k)}
where P is an elementary abelian 2-subgroup and A, B are cyclic subgroups of PSL(2, 2k)
having order 2k, 2k−1 and 2k +1 respectively. Also the number of conjugates of P, A and B
in PSL(2, 2k) are 2k + 1, 2k−1(2k + 1) and 2k−1(2k − 1) respectively. Note that PSL(2, 2k)
is a AC-group and so, by Lemma 2.1, the commuting graph of PSL(2, 2k) is given by

(2k + 1)K|xPx−1|−1 t 2k−1(2k + 1)K|xAx−1|−1 t 2k−1(2k − 1)K|xBx−1|−1.

That is, ΓPSL(2,2k) = (2k + 1)K2k−1 t 2k−1(2k + 1)K2k−2 t 2k−1(2k − 1)K2k . Hence, the
result follows from (1). 2

Proposition 2.3 The spectrum of the commuting graph of the general linear group GL(2, q),
where q = pn > 2 and p is a prime integer, is given by

{(−1)q4−q3−2q2−q, (q2 − 3q + 1)q(q+1)/2, (q2 − q − 1)q(q−1)/2, (q2 − 2q)q+1}.
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Proof We have |GL(2, q)| = (q2 − 1)(q2 − q) and |Z(GL(2, q))| = q − 1. By Proposition
3.26 of [12], the set of centralizers of non-central elements of GL(2, q) is given by

{xDx−1, xIx−1, xPZ(GL(2, q))x−1 : x ∈ GL(2, q)}

where D is the subgroup of GL(2, q) consisting of all diagonal matrices, I is a cyclic subgroup
of GL(2, q) having order q2 − 1 and P is the Sylow p-subgroup of GL(2, q) consisting of all
upper triangular matrices with 1 in the diagonal. The orders of D and PZ(GL(2, q)) are
(q− 1)2 and q(q− 1) respectively. Also the number of conjugates of D, I and PZ(GL(2, q))
in GL(2, q) are q(q + 1)/2, q(q − 1)/2 and q +1 respectively. Since GL(2, q) is an AC-group
(see Lemma 3.5 of [12]), by Lemma 2.1 we have ΓGL(2,q) =

q(q + 1)

2
K|xDx−1|−q+1 t

q(q − 1)

2
K|xIx−1|−q+1 t (q + 1)K|xPZ(GL(2,q))x−1|−q+1.

That is, ΓGL(2,q) =
q(q + 1)

2
Kq2−3q+2t

q(q − 1)

2
Kq2−q t (q+1)Kq2−2q+1. Hence, the result

follows from (1). 2

Theorem 2.2 Let G be a finite group and G
Z(G)

∼= Sz(2), where Sz(2) is the Suzuki group

presented by 〈a, b : a5 = b4 = 1, b−1ab = a2〉. Then

Spec(ΓG) = {(−1)19|Z(G)|−6, (4|Z(G)| − 1)1, (3|Z(G)| − 1)5}.

Proof We have

G

Z(G)
= 〈aZ(G), bZ(G) : a5Z(G) = b4Z(G) = Z(G), b−1abZ(G) = a2Z(G)〉.

Observe that

CG(a) = Z(G) t aZ(G) t a2Z(G) t a3Z(G) t a4Z(G),
CG(ab) = Z(G) t abZ(G) t a4b2Z(G) t a3b3Z(G),
CG(a2b) = Z(G) t a2bZ(G) t a3b2Z(G) t ab3Z(G),
CG(a2b3) = Z(G) t a2b3Z(G) t ab2Z(G) t a4bZ(G),
CG(b) = Z(G) t bZ(G) t b2Z(G) t b3Z(G) and
CG(a3b) = Z(G) t a3bZ(G) t a2b2Z(G) t a4b3Z(G)

are the only centralizers of non-central elements of G. Also note that these centralizers are
abelian subgroups of G. Thus G is an AC-group. By Lemma 2.1, we have

ΓG = K4|Z(G)| t 5K3|Z(G)|

since |CG(a)| = 5|Z(G)| and

|CG(ab)| = |CG(a2b)| = |CG(a2b3)| = |CG(b)| = |CG(a3b)| = 4|Z(G)|.

Therefore, by (1), the result follows. 2
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Proposition 2.4 Let F = GF (2n), n ≥ 2 and ϑ be the Frobenius automorphism of F , i.

e., ϑ(x) = x2 for all x ∈ F . Then the spectrum of the commuting graph of the group

A(n, ϑ) =







U(a, b) =





1 0 0
a 1 0
b ϑ(a) 1



 : a, b ∈ F







.

under matrix multiplication given by U(a, b)U(a′, b′) = U(a + a′, b + b′ + a′ϑ(a)) is

Spec(ΓA(n,ϑ)) = {(−1)(2
n−1)2 , (2n − 1)2

n−1}.

Proof Note that Z(A(n, ϑ)) = {U(0, b) : b ∈ F } and so |Z(A(n, ϑ))| = 2n −1. Let U(a, b)
be a non-central element of A(n, ϑ). It can be seen that the centralizer of U(a, b) in A(n, ϑ)
is Z(A(n, ϑ))tU(a, 0)Z(A(n, ϑ)). Clearly A(n, ϑ) is an AC-group and so by Lemma 2.1 we
have ΓA(n,ϑ) = (2n − 1)K2n . Hence the result follows by (1). 2

Proposition 2.5 Let F = GF (pn), p be a prime. Then the spectrum of the commuting

graph of the group

A(n, p) =







V (a, b, c) =





1 0 0
a 1 0
b c 1



 : a, b, c ∈ F







.

under matrix multiplication V (a, b, c)V (a′, b′, c′) = V (a + a′, b + b′ + ca′, c + c′) is

Spec(ΓA(n,p)) = {(−1)p3n−2pn−1, (p2n − pn − 1)pn+1}.

Proof We have Z(A(n, p)) = {V (0, b, 0) : b ∈ F } and so |Z(A(n, p))| = pn. The central-
izers of non-central elements of A(n, p) are given by

(i) If b, c ∈ F and c 6= 0 then the centralizer of V (0, b, c) in A(n, p) is
{V (0, b′, c′) : b′, c′ ∈ F } having order |p2n|.

(ii) If a, b ∈ F and a 6= 0 then the centralizer of V (a, b, 0) in A(n, p) is
{V (a′, b′, 0) : a′, b′ ∈ F } having order |p2n|.

(iii) If a, b, c ∈ F and a 6= 0, c 6= 0 then the centralizer of V (a, b, c) in A(n, p) is {V (a′, b′, ca′a−1) :
a′, b′ ∈ F } having order |p2n|.

It can be seen that all the centralizers of non-central elements of A(n, p) are abelian. Hence
A(n, p) is an AC-group and so

ΓA(n,p) = Kp2n−pn t Kp2n−pn t (pn − 1)Kp2n−pn = (pn + 1)Kp2n−pn .

Hence the result follows from (1). 2

We would like to mention here that the groups considered in Proposition 2.4-2.5 are
constructed by Hanaki (see [14]). These groups are also considered in [15], in order to
compute their numbers of distinct centralizers.
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3 Some applications

In this section, we show that the commuting graph of a finite non-abelian group G is integral
if G is not isomorphic to S4 and the commuting graph of G is planar. We also show that
the commuting graph of a finite non-abelian group G is integral if the commuting graph of
G is toroidal. We shall use the following results.

Theorem 3.1 Let G be a finite group such that G
Z(G)

∼= Z2 × Z2. Then

Spec(ΓG) = {(−1)3|Z(G)|−3, (|Z(G)| − 1)3}.

Proof The result follows from Theorem 2.1 noting that G is an AC-group with 3 distinct
centralizers of non-central elements and all of them have order 2|Z(G)|. 2

Proposition 3.1 Let D2m = 〈a, b : am = b2 = 1, bab−1 = a−1〉 be the dihedral group of

order 2m, where m > 2. Then

Spec(ΓD2m
) =

{

{(−1)m−2, 0m, (m− 2)1} if m is odd

{(−1)(3m/2) − 3, 1m/2, (m− 3)1} if m is even.

Proof Note that D2m is a non-abelian AC-group. If m is even then |Z(D2m)| = 2 and
D2m has m

2 + 1 distinct centralizers of non-central elements. Out of these centralizers one
has order m and the rests have order 4. Therefore ΓD2m

= Km−2 t m
2 K2. If m is odd then

|Z(D2m)| = 1 and D2m has m+1 distinct centralizers of non-central elements. In this case,
one centralizer has order m and the rests have order 2. Therefore ΓD2m

= Km−1 t mK1.
Hence the result follows from (1). 2

Proposition 3.2 The spectrum of the commuting graph of the generalized quaternion group

Q4n = 〈x, y : y2n = 1, x2 = yn , xyx−1 = y−1〉, where n ≥ 2, is given by

Spec(ΓQ4n
) = {(−1)3n−3, 1n, (2n− 3)1}.

Proof Note that Q4n is a non-abelian AC-group with n + 1 distinct centralizers of non-
central elements. Out of these centralizers one has order 2n and the rests have order 4.
Also |Z(Q4n)| = 2. Therefore ΓQ4n

= K2n−2 t nK2. Hence the result follows from (1). 2

As an application of Theorem 3.1 we have the following lemma.

Lemma 3.1 Let G be a group isomorphic to any of the following groups

(i) Z2 × D8

(ii) Z2 × Q8

(iii) M16 = 〈a, b : a8 = b2 = 1, bab = a5〉
(iv) Z4 o Z4 = 〈a, b : a4 = b4 = 1, bab−1 = a−1〉
(v) D8 ∗ Z4 = 〈a, b, c : a4 = b2 = c2 = 1, ab = ba, ac = ca, bc = a2cb〉
(vi) SG(16, 3) = 〈a, b : a4 = b4 = 1, ab = b−1a−1, ab−1 = ba−1〉.

Then Spec(ΓG) = {(−1)9, 33}.
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Proof If G is isomorphic to any of the above listed groups, then |G| = 16 and |Z(G)| = 4.
Therefore, G

Z(G)
∼= Z2 × Z2. Thus the result follows from Theorem 3.1. 2

The next lemma is also useful in this section.

Lemma 3.2 Let G be a non-abelian group of order pq, where p and q are primes with

p | (q − 1). Then

Spec(ΓG) = {(−1)pq−q−1 , (p− 2)q, (q − 2)1}.

Proof It is easy to see that |Z(G)| = 1 and G is an AC-group. Also the centralizers of
non-central elements of G are precisely the Sylow subgroups of G. The number of Sylow
q-subgroups and Sylow p-subgroups of G are one and q respectively. Therefore, by Lemma
2.1 we have ΓG = Kq−1 t qKp−1. Hence, the result follows from (1). 2

Now we state and proof the main results of this section.

Theorem 3.2 Let ΓG be the commuting graph of a finite non-abelian group G. If G is not

isomorphic to S4 and ΓG is planar then ΓG is integral.

Proof By Theorem 2.2 of [10] we have that ΓG is planar if and only if G is isomorphic
to either D6, D8, D10, D12, Q8, Q12, Z2 × D8, Z2 × Q8, M16, Z4 o Z4, D8 ∗ Z4, SG(16, 3), A4,
A5, S4, SL(2, 3) or Sz(2) = 〈a, b : a5 = b4 = 1, b−1ab = a3〉.

If G ∼= D6, D8, D10 or D12 then by Proposition 3.1, one may conclude that ΓG is integral.
If G ∼= Q8 or Q12 then by Proposition 3.2, ΓG becomes integral. If G ∼= Z2 × D8, Z2 ×
Q8, M16, Z4 o Z4, D8 ∗ Z4 or SG(16, 3) then by Lemma 3.1, ΓG becomes integral.

If G ∼= A4 = 〈a, b : a2 = b3 = (ab)3 = 1〉 then the distinct centralizers of non-central ele-
ments of G are CG(a) = {1, a, bab2, b2ab}, CG(b) = {1, b, b2}, CG(ab) = {1, ab, b2a}, CG(ba) =
{1, ba, ab2} and CG(aba) = {1, aba, bab}. Note that these centralizers are abelian subgroups
of G. Therefore, ΓG = K3 t 4K2 and

Spec(ΓG) = {(−1)6, 21, 14}.
Thus ΓG is integral.

If G ∼= Sz(2) then by Theorem 2.2, we have

Spec(ΓG) = {(−1)13, (3)1, (2)5}.
Hence, ΓG is integral.

If G is isomorphic to

SL(2, 3) = 〈a, b, c : a3 = b4 = 1,b2 = c2,

c−1bc = b−1, a−1ba = b−1c−1, a−1ca = b−1〉
then Z(G) = {1, b2}. It can be seen that

CG(b) = {1, b, b2, b3} = 〈b〉,
CG(c) = {1, c, c2, c3} = 〈c〉,
CG(bc) = {1, b2, bc, cb} = 〈bc〉,
CG(a2b2) = {1, b2, a, a2, a2b2, ab2} = 〈a2b2〉,
CG(ac) = {1, b2, ac, ca2, a2bc, ab2c} = 〈ac〉,
CG(ca) = {1, b2, ca, a2c, ba2, ab} = 〈ca〉 and
CG(a2b) = {1, b2, a2b, ba, b3a, (ba)2} = 〈a2b〉
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are the only distinct centralizers of non-central elements of G. Note that these centralizers
are abelian subgroups of G. Therefore, ΓG = 3K2 t 4K4 and

Spec(ΓG) = {(−1)15, 13, 34}.

Thus ΓG is integral.
If G ∼= A5 then by Proposition 2.2, we have

Spec(ΓG) = {(−1)38, 110, 25, 36}

noting that PSL(2, 4) ∼= A5. Thus ΓG is integral.
Finally, if G ∼= S4 then it can be seen that the characteristic polynomial of ΓG is

(x − 1)7(x + 1)10(x2 − 5)2(x2 − 3x − 2) and so

Spec(ΓG) =







17, (−1)10, (
√

5)2, (−
√

5)2,

(

3 +
√

17

2

)1

,

(

3 −
√

17

2

)1






.

Hence, ΓG is not integral. This completes the proof. 2

In [10, Theorem 2.3], Afkhami et al. have classified all finite non-abelian groups whose
commuting graphs are toroidal. Unfortunately, the statement of Theorem 2.3 in [10] is
printed incorrectly. We list the correct version of [10, Theorem 2.3] below, since we are
going to use this.

Theorem 3.3 Let G be a finite non-abelian group. Then ΓG is toroidal if and only if ΓG

is projective if and only if G is isomorphic to either D14, D16, Q16, QD16, D6 ×Z3, A4 ×Z2

or Z7 o Z3.

Theorem 3.4 Let ΓG be the commuting graph of a finite non-abelian group G. Then ΓG

is integral if ΓG is toroidal.

Proof By Theorem 3.3 we have that ΓG is toroidal if and only if G is isomorphic to either
D14, D16, Q16, QD16, D6 × Z3, A4 × Z2 or Z7 o Z3.

If G ∼= D14 or D16 then by Proposition 3.1, one may conclude that ΓG is integral. If
G ∼= Q16 then by Proposition 3.2, ΓG becomes integral. If G ∼= QD16 then by Proposition
2.1, ΓG becomes integral. If G ∼= Z7 o Z3 then ΓG is integral, by Lemma 3.2. If G is
isomorphic to D6 ×Z3 or A4 ×Z2 then ΓG becomes integral by Corollary 2.1, since D6 and
A4 are AC-groups. This completes the proof. 2

We shall conclude the paper with the following result.

Proposition 3.3 Let ΓG be the commuting graph of a finite non-abelian group G. Then

ΓG is integral if the complement of ΓG is planar.

Proof If the complement of ΓG is planar then by Proposition 2.3 of [12] we have that G is
isomorphic to either D6, D8 or Q8. If G ∼= D6 or D8 then by Proposition 3.1, ΓG is integral.
If G ∼= Q8 then by Proposition 3.2, ΓG becomes integral. This completes the proof. 2
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