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Spectrum of commuting graphs of some classes of finite groups
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Abstract In this paper, we initiate the study of spectrum of the commuting graphs
of finite non-abelian groups. We first compute the spectrum of this graph for several
classes of finite groups, in particular AC-groups. We show that the commuting graphs
of finite non-abelian AC-groups are integral. We also show that the commuting graph
of a finite non-abelian group G is integral if G is not isomorphic to the symmetric
group of degree 4 and the commuting graph of G is planar. Further, it is shown that
the commuting graph of G is integral if its commuting graph is toroidal.
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1 Introduction

Let G be a finite group with centre Z(G). The commuting graph of a non-abelian group G,
denoted by I'g, is a simple undirected graph whose vertex set is G\ Z(G), and two vertices
x and y are adjacent if and only if xy = yzx. Various aspects of commuting graphs of
different finite groups can be found in [1-6]. In [7], the authors have studied the Laplacian
spectrum of non-commuting graphs of some classes of finite non-abelian groups. In this
paper, we initiate the study of spectrum of commuting graphs of finite non-abelian groups.
Recall that the spectrum of a graph G denoted by Spec(G) is the set {A¥ \s2  M\en}
where A1, A2, ..., A\, are the eigenvalues of the adjacency matrix of G with multiplicities
k1, ko, ..., kn, respectively. A graph G is called integral if Spec(G) contains only integers.
It is well known that the complete graph K, on n vertices is integral. Moreover, if G is the
disjoint union of some complete graphs then also it is integral. The notion of integral graph
was introduced by Harary and Schwenk [8] in the year 1974. A very impressive survey on
integral graphs can be found in [9].

We observe that the commuting graph of a non abelian finite AC-group is disjoint union
of some complete graphs. Therefore, commuting graphs of such groups are integral. In
general it is difficult to classify all finite non-abelian groups whose commuting graphs are
integral. As applications of our results together with some other known results, in Section
3, we show that the commuting graph of a finite non-abelian group G is integral if G is
not isomorphic to Sy, the symmetric group of degree 4, and the commuting graph of G is
planar. We also show that the commuting graph of a finite non-abelian group G is integral
if the commuting graph of G is toroidal. Recall that the genus of a graph is the smallest
non-negative integer n such that the graph can be embedded on the surface obtained by
attaching n handles to a sphere. A graph is said to be planar or toroidal if the genus of the
graph is zero or one respectively. It is worth mentioning that Afkhami et al. [10] and Das
et al. [11] have classified all finite non-abelian groups whose commuting graphs are planar
or toroidal recently.
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2 Computing spectrum

It is well known that the complete graph K,, on n vertices is integral and Spec(K,,) is given
by {(=1)"71, (n — 1)!}. Further, if G = K, U Ky, U -+ U K, , where K,,,, are complete
graphs on m; vertices for 1 <14 <[, then

1
m;—l1
Spec(G) = {(—1)1';1 ,(mi— DY (me = DY L, (myg — 1D (1)
If mi = mg = -+ = my = m then we write G = [K,, and in that case Spec(G) =
{(=1)10m=1) (m — 1)1},

In this section, we compute the spectrum of the commuting graphs of different families of
finite non-abelian AC-groups. A group G is called an AC-group if Cg(x) :={y € G:ay =
yx} is abelian for all x € G\ Z(G). Various aspects of AC-groups can be found in [11-13].
The following lemma plays an important role in computing spectrum of commuting graphs
of AC-groups.

Lemma 2.1 Let G be a finite non-abelian AC-group. Then the commuting graph of G is
given by
n
Te= U Kixi-1z©)

where X1, ..., Xy are the distinct centralizers of non-central elements of G.

Proof Let G be a finite non-abelian AC-group and X7, ..., X,, be the distinct centralizers
of non-central elements of G. Let X; = Cg(x;) where z; € G\ Z(G) and 1 < i < n.
Let z,y € X; \ Z(G) for some i and x # y then, since G an AC-group, there is an edge
between = and y in the commuting graph of G. Suppose that z € (X; N X;) \ Z(G) for
some 1 < ¢ # j < n. Then [r,z;] = 1 and [z,z;] = 1. Hence, by Lemma 3.6 of [12]
we have Cg(x) = Cg(x;) = Ca(z;), a contradiction. Therefore, X; N X; = Z(G) for any

1 <i# j <n. This shows that I'q = .QlK|Xi|*|Z(G)|' O

Theorem 2.1 Let G be a finite non-abelian AC-group. Then the spectrum of the commut-
ing graph of G is given by

31X -n(1Z(G)|+1)

{(=1) (Xl = 1Z2@) =D (Xl = 12(6)] - 1))

where X1, ..., Xy are the distinct centralizers of non-central elements of G.

Proof The proof follows from Lemma 2.1 and (1). O

Corollary 2.1 Let G be a finite non-abelian AC-group and A be any finite abelian group.
Then the spectrum of the commuting graph of G x A is given by

(- ST - 1z@))-D)
(A[(1Xa] — 1Z(G)]) — 1))}

where X1, ..., Xy are the distinct centralizers of non-central elements of G.
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Proof It is easy to see that Z(G x A) = Z(G) x A and X7 x A, Xy x A,..., X,, x A are
the distinct centralizers of non-central elements of G x A. Therefore, if G is an AC-group
then G x A is also an AC-group. Hence, the result follows from Theorem 2.1. O

Now we compute the spectrum of the commuting graphs of some particular families of
AC-groups. We begin with the well-known family of quasidihedral groups.

Propositilon 2.1 The spectrum ofzthe commuting graph of the quasidihedral group QDan =
(a,b:a®" =02 =1,bab~' =a®" 1), wheren > 4, is given by

Spec(Tgp,n ) = {(~1)2" 72" 773127 (271 —3)'}.

Proof It is well-known that Z(QDan) = {1,a2" }. Also
Capyn(a) = Copyn (a') = (a) for 1 <i <2771 — 1,0 #2772
and _ L
Cop,n (a’b) = {1,a®> ~,a’b,a"™® b} for 1 <j < 2" 2

are the only centralizers of non-central elements of ) Da». Note that these centralizers are
abelian subgroups of @ Dsr. Therefore, by Lemma 2.1

2n72

LoD, = Kicgp,, ()\2(@Dan)| U (U Kicgp,, (@/)\2(QDan)))-

That is, FQDzn = Kon-1_o U 2"72K2, since |CQD2n (CL)| e 2n71,|CQD2n (CLJb)| = 4 for
1 <j<2"2and |Z(QD2~)| = 2. Hence, the result follows from (1). O

Proposition 2.2 The spectrum of the commuting graph of the projective special linear
group PSL(2,2%), where k > 2, is given by
{(_1)23’“722’“72’6“72 (2F — 1)2’“*1(2’“71) (2F - 2)2"+1 (2F - 3)2’“*1(2’%1)}'

Proof We know that PSL(2,2"%) is a non-abelian group of order 2¥(22% — 1) with triv-
ial center. By Proposition 3.21 of [12], the set of centralizers of non-trivial elements of
PSL(2,2%) is given by

{xPx~ ' xAz~ Bz~ : 2 € PSL(2,2%)}

where P is an elementary abelian ~ 2-subgroup and A, B are cyclic subgroups of PSL(2, 2)
having order 2%, 2% —1 and 2* 41 respectively. Also the number of conjugates of P, A and B
in PSL(2,2%) are 28 +1,2¥=1(2% 4+ 1) and 2*~1(2* — 1) respectively. Note that PSL(2,2¥)
is a AC-group and so, by Lemma 2.1, the commuting graph of PSL(2,2%) is given by

2F + VK pppe1—1 U251 (28 + 1)K jpap 121 U251 (2 = DK o1

That is, Tpgr(o,2r) = (28 + 1) Koe_q U 287128 + 1) Kor_p U 2F71(2% — 1) Kyi. Hence, the
result follows from (1). O

Proposition 2.3 The spectrum of the commuting graph of the general linear group GL(2, q),
where ¢ = p™ > 2 and p is a prime integer, is given by

4 3 2
{(—=1)7 02079 (g% = 3g + 1)UV (¢ — g — )90 D/2 (g7 — 2¢)H ).
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Proof We have |GL(2,q)| = (¢*> — 1)(¢*> — q) and |Z(GL(2,q))| = ¢ — 1. By Proposition
3.26 of [12], the set of centralizers of non-central elements of GL(2, q) is given by

{eDx Y xlz " xPZ(GL(2,q9))z~ ' : 2 € GL(2,q)}

where D is the subgroup of GL(2, ¢) consisting of all diagonal matrices, I is a cyclic subgroup
of GL(2, q) having order ¢ — 1 and P is the Sylow p-subgroup of GL(2,q) consisting of all
upper triangular matrices with 1 in the diagonal. The orders of D and PZ(GL(2,q)) are
(¢ —1)? and g(q — 1) respectively. Also the number of conjugates of D, I and PZ(GL(2,q))
in GL(2,q) are q(¢g+ 1)/2,q(¢ — 1)/2 and ¢+ 1 respectively. Since GL(2, q) is an AC-group
(see Lemma 3.5 of [12]), by Lemma 2.1 we have I'gr2,q) =

q(g+1)

q(g —1
9 K|mDm*1|fq+1 U u

Kizra-1)—q+1 U (@ + DK 2 pz(aL2,9)21|—q+1-

q(qg+1) glq—1)

5 2—qU(q+1)Ksp2_9q41. Hence, the result
follows from (1). O

That iS, FGL(2,q) = Kq273q+2 (]

Theorem 2.2 Let G be a finite group and % >~ 52(2), where Sz(2) is the Suzuki group

presented by (a,b: a® = b* = 1,b"'ab = a®). Then

Spec(Tg) = {(—1)"7 D178, (4|2(G)| - 1)', 3]2(G)| - 1)°}.

Proof We have

G 1 _ 2
m ={(aZ(G),bZ(G) : a5Z(G) = b4Z(G) =Z(G),b""abZ(G) = a*Z(Q)).
Observe that

Co( Z(G)UaZ(G)Ua?Z(G)Ua*Z(G) U a*Z(Q),
Ca(ad) Z(G)UabZ(G)Ua*h?Z(G) U a*b* Z(G),
Ce(a?h) =Z(G)Ua*bZ(G)Ua®b?*Z(G)Uab3Z(G),
Ce(a?b? Z(G)Ua?b®*Z(G) Uab’Z(G) U a*bZ(G),
Ca( ZG)YUbZ(G)UBZ(G)Ub3Z(G) and
Co( Z(G)Ua*bZ(G)Ua??Z(G) U a*b®Z(G)

are the only centralizers of non-central elements of G. Also note that these centralizers are
abelian subgroups of G. Thus G is an AC-group. By Lemma 2.1, we have

Lo = Kyjz(e) U5K3|zq)
since |Cg(a)| = 5|Z(G)| and
|Ca(ab)| = [Ca(a®h)| = |Ca(a®h?)| = |Ca(b)| = |Cala®b)| = 4| Z(G)|.

Therefore, by (1), the result follows. O
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Proposition 2.4 Let F' = GF(2"),n > 2 and 9 be the Frobenius automorphism of F, i.
e., 9(z) = 2% for all x € F. Then the spectrum of the commuting graph of the group

1 0 0
An,9)=qU(a,b)=|a 1 O0f:a,beF
b 9a) 1

under matriz multiplication given by U(a,b)U(a’,b') =U(a+d',b+ b + a’'9(a)) is
Spec(Tagn,) = {(-1)@" 7%, (2" =12 71}

Proof Note that Z(A(n,¥)) ={U(0,b): b€ F} and so |Z(A(n,?))| = 2" —1. Let U(a,b)
be a non-central element of A(n,?). It can be seen that the centralizer of U(a,b) in A(n, )
is Z(A(n,9))UU(a,0)Z(A(n,v)). Clearly A(n,?) is an AC-group and so by Lemma 2.1 we
have I" g (n,9) = (2" — 1) K2n. Hence the result follows by (1). O

Proposition 2.5 Let F = GF(p"), p be a prime. Then the spectrum of the commuting
graph of the group

1 00
A(n,p) =< V(a,b,e)=|a 1 0| :a,b,ceF
b ¢ 1

under matriz multiplication V(a,b,c)V(a',b',c) =V(a+a', b+ b +ca’,c+ ) is
Spec(Tagnp) = (=" 7L (" —p" = 1)),

Proof We have Z(A(n,p)) = {V(0,b,0):b € F} and so |Z(A(n,p))| = p". The central-

izers of non-central elements of A(n,p) are given by

(i) If b,c € F and ¢ # 0 then the centralizer of V(0,b,¢) in A(n,p) is
{V(0,v,c) : ¥/, € F} having order |p*"|.

(ii) If a,b € F and a # 0 then the centralizer of V(a,b,0) in A(n,p) is
{V(d',¥,0): a/,b € F} having order |p*"].
(iii) Ifa,b,c € F and a # 0, c # 0 then the centralizer of V(a, b, ¢) in A(n,p) is {V(a/,V,ca’a™t) :
a’,t’ € F} having order |p?"|.
It can be seen that all the centralizers of non-central elements of A(n, p) are abelian. Hence
A(n, p) is an AC-group and so
T An,p) = Kpzn _pn U Kpon _pn U (" — I)szn,pn ="+ I)szn,pn.

Hence the result follows from (1). O

We would like to mention here that the groups considered in Proposition 2.4-2.5 are
constructed by Hanaki (see [14]). These groups are also considered in [15], in order to
compute their numbers of distinct centralizers.
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3 Some applications

In this section, we show that the commuting graph of a finite non-abelian group G is integral
if G is not isomorphic to S4 and the commuting graph of G is planar. We also show that
the commuting graph of a finite non-abelian group G is integral if the commuting graph of
G is toroidal. We shall use the following results.

Theorem 3.1 Let G be a finite group such that % > 7o X Zo. Then

Spec(Te) = {(~1)P 172 (12(@)| - 1)*).

Proof The result follows from Theorem 2.1 noting that G is an AC-group with 3 distinct
centralizers of non-central elements and all of them have order 2|Z(G)|. O

Proposition 3.1 Let Dy, = (a,b: a™ = b*> = 1,bab~! = a=') be the dihedral group of
order 2m, where m > 2. Then
{(=1)™2,0™, (m —2)'} if m is odd

Spec(I'p,,,) = { {(_1)(3m/2) -3 1m/2, (m — 3)'} if m is even.

Proof Note that Day, is a non-abelian AC-group. If m is even then |Z(Dsy,)| = 2 and
Doy, has 3 + 1 distinet centralizers of non-central elements. Out of these centralizers one
has order m and the rests have order 4. Therefore I'p,,, = Ky,—2 U 53 K. If m is odd then
|Z(Day,)| = 1 and Da,, has m+1 distinct centralizers of non-central elements. In this case,
one centralizer has order m and the rests have order 2. Therefore I'p, = K,,_1 LU mK;.
Hence the result follows from (1). O

Proposition 3.2 The spectrum of the commuting graph of the generalized quaternion group
Qun = (m,y:y*" = 1,22 = y", xyz~t =y~ 1), where n > 2, is given by

Spec(Tq,,) = {(=1)*"7?,1", (2n - 3)'}.
Proof Note that Q4, is a non-abelian AC-group with n 4 1 distinct centralizers of non-
central elements. Out of these centralizers one has order 2n and the rests have order 4.

Also |Z(Qun)| = 2. Therefore I'q,, = Ko,—2 U nK,. Hence the result follows from (1). O
As an application of Theorem 3.1 we have the following lemma.

Lemma 3.1 Let G be a group isomorphic to any of the following groups
(i) Za x Dg

(ii) Z2 X Qs

i) Mg = (a,b:a® =b%>=1,bab = a®)

Zyx Ty = {a,b:a* =b*=1,bab™! =a~1)
(v) Dg*Zy = {a,b,c:a* =b*=c*=1,ab= ba,ac = ca, bc = a’cb)

(vi) SG(16,3) = (a,b:a* =b* =1,ab=0b"ta" ', ab™! = ba™!).

Then Spec(T'g) = {(—1)?, 33}.

(iii

(iv

)
)
)
)
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Proof If G is isomorphic to any of the above listed groups, then |G| = 16 and |Z(G)| = 4.
Therefore, % >~ 7o X Zo. Thus the result follows from Theorem 3.1. O
The next lemma is also useful in this section.

Lemma 3.2 Let G be a non-abelian group of order pq, where p and q are primes with
p|(qg—1). Then

Spec(Te) = {(=1)"""*"", (p— 2)%, (¢ - 2)'}.

Proof It is easy to see that |Z(G)| = 1 and G is an AC-group. Also the centralizers of

non-central elements of G are precisely the Sylow subgroups of G. The number of Sylow

g-subgroups and Sylow p-subgroups of G are one and ¢ respectively. Therefore, by Lemma

2.1 we have I'q = K41 U ¢Kp_1. Hence, the result follows from (1). O
Now we state and proof the main results of this section.

Theorem 3.2 Let I'g be the commuting graph of a finite non-abelian group G. If G is not
isomorphic to Sy and U'g s planar then I'g is integral.

Proof By Theorem 2.2 of [10] we have that I'¢ is planar if and only if G is isomorphic
to either Dg, Dg, DlO; D12, Qg, Q12, ZQ X Dg, ZQ X Qg, Mlg, Z4 Dall Z4, Dg * Z4, SG(16, 3), A4,
As, S4,SL(2,3) or Sz(2) = {a,b:a® =b* =1,b"1ab = a3).

If G = D¢, Dg, D1g or D15 then by Proposmon 3.1, one may conclude that I'g is integral.
If G = Qg or Q12 then by Proposition 3.2, I'¢ becomes integral. If G = Zgy x Dg,Zy X
Qs, My6,24 X Zyg, Dg x Z4 or SG(16,3) then by Lemma 3.1, I'¢ becomes integral.

If G2 Ay = (a,b:a? =b® = (ab)® = 1) then the distinct centralizers of non-central ele-
ments of G are Cg(a) = {1, a, bab?, b%ab}, Ca(b) = {1,b,b%}, Cq(ab) = {1, ab,b%a}, Ca(ba) =
{1, ba, ab?} and Cg(aba) = {1, aba, bab}. Note that these centralizers are abelian subgroups
of G. Therefore, I'¢ = K3 U4K5 and

Spec(Tg) = {(—1)5, 2%, 14}.

Thus I'g is integral.
If G =2 5z(2) then by Theorem 2.2, we have

Spec(Te) = {(-1)"%, (3)", (2)°}-

Hence, I' is integral.
If G is isomorphic to

SL(2,3) = (a,b,c:a® =b* =1,b% = 2,
cloe=b"1taba =b"1ct

then Z(G) = {1,b%}. It can be seen that

,a ea=0"1)

CG(b) = {Lba b2a bg} = <b>a

Cole)  ={Lee) =0,

Ca(be) = {1,b2, be, cb} = (bc),

Cq(a?v?) ={1, b2 a,a? a2b2 ab?®} = (a?b?),
Ca(ac) =1, b2 ac, ca a2bc ab’c} = {ac),
Cg(ca) =1, b2 ca, a’c, ba? ab} = {(ca) and
Cqo(a?b) = {1,b% 2b ba, b3a, (ba)?} = (a?b)
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are the only distinct centralizers of non-central elements of G. Note that these centralizers
are abelian subgroups of G. Therefore, I'¢ = 3K5 L1 4K, and

Spec(Tg) = {(—1)*,13, 3%},

Thus I'g is integral.
If G = As then by Proposition 2.2, we have

Spec(Tg) = {(—1)3%,11° 25 35}

noting that PSL(2,4) & As. Thus I'g is integral.
Finally, if G = S, then it can be seen that the characteristic polynomial of I'g is
(. —1)"(z + 1)19%2? - 5)%(2%2 — 3z — 2) and so

Spec(T'g) = 4 17, (=)', (v5)%, (—=V5)?, (Lz\/ﬁ> ’ (LZ\/W>

Hence, ' is not integral. This completes the proof. O

In [10, Theorem 2.3], Afkhami et al. have classified all finite non-abelian groups whose
commuting graphs are toroidal. Unfortunately, the statement of Theorem 2.3 in [10] is
printed incorrectly. We list the correct version of [10, Theorem 2.3] below, since we are
going to use this.

Theorem 3.3 Let G be a finite non-abelian group. Then I'g is toroidal if and only if I'q
is projective if and only if G is isomorphic to either D14, D1g, Q16, @D16, Dg X Zs3, Ay X Zo
or Ly X Zs.

Theorem 3.4 Let I'¢ be the commuting graph of a finite non-abelian group G. Then I'g
is integral if T'g is toroidal.

Proof By Theorem 3.3 we have that ' is toroidal if and only if G is isomorphic to either
D14, D16, Q16, @ D16, Do X Zs3, Ay X Zz or Z7 X L.

If G =2 Di4 or Dyg then by Proposition 3.1, one may conclude that I'g is integral. If
G = @16 then by Proposition 3.2, I'¢ becomes integral. If G = QD¢ then by Proposition
2.1, ' becomes integral. If G = Z; x Z3 then I'g is integral, by Lemma 3.2. If G is
isomorphic to Dg x Zs or Ay x Zs then I'g becomes integral by Corollary 2.1, since Dg and
Ay are AC-groups. This completes the proof. O

We shall conclude the paper with the following result.

Proposition 3.3 Let I'¢ be the commuting graph of a finite non-abelian group G. Then
T'¢ is integral if the complement of I'c is planar.

Proof If the complement of I'¢ is planar then by Proposition 2.3 of [12] we have that G is
isomorphic to either Dg, Dg or Qs. If G = Dg or Dg then by Proposition 3.1, I'g is integral.
If G = Qg then by Proposition 3.2, I'¢ becomes integral. This completes the proof. O
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