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Abstract In recent year Behera and Panda introduced a new number sequence that
is solutions of the Diophantine equation1 + 2 + 3 . . . + (n − 1) = (n + 1) + (n + 2) ... +
(n + r), where n and r are positive integers. If the pairs(n, r) constitutes a solu-
tion of above equation then n is called balancing number and r is the correspond-
ing balancer. The concept of balancing number is extended by introducing the no-
tion of cobalancing which solution of the Diophantine equation1 + 2 + 3 . . . + N =
(N + 1) + (N + 2) · · · + (N + R) ,where N is called cobalancing number and R is
called corresponding cobalancer. Further, Panda introduced the concepts of cor-
responding Lucas-balancing defined as Cn =

√

8B2
n

+ 1 and Lucas-cobalancing as
cn =

√

8b2
n

+ 8bn + 1, where Bn is nth balancing number and bn is nth cobalancing
number. In this paper, we investigate some new properties of Lucas-balancing and
Lucas-cobalancing.
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1 Introduction

The concept of balancing number is introduced by Behera and Panda [1] in connection with
Diophantine equation

1 + 2 + 3 . . . + (n − 1) = (n + 1) + (n + 2) + · · ·+ (n + r) (1)

for some r ∈ Z+.Here r is called the balancer corresponding to balancing number n. For
example, 6 is balancing number with balancer 2. Balancing number follow recurrence re-
lation Bn+1 = 6Bn − Bn−1. Properties of balancing number are very similar to Fibonacci
numbers. The study of balancing number and cobalancing number can be seen in [2].

Panda and Ray [3] modified the notion of balancing number to cobalancing number, in
which natural N is called cobalancing number if

1 + 2 + 3 . . . + N = (N + 1) + (N + 2) + · · ·+ (N + R) (2)

for some natural number R, where R is called cobalancer of cobalancing number N . The
first three cobalancing numbers are 2, 14 and 84 with cobalancers 1, 6 and 35 respectively.

Panda [4] introduced the Lucas-balancing number as Cn =
√

8B2
n + 1, the first three

Lucas-balancing number are 3,17 and 99. Further, he defined Lucas- cobalancing number
as cn =

√

8b2
n + 8bn + 1, first three Lucas-cobalancing are 1, 7 and 40, where n ∈ Z+.

The Binet formula of balancing number, Lucas-balancing number and Lucas-cobalancing

number are Bn =
α

2n

1
−α

2n

2

4
√

2
, Cn =

α
2n

1
+α

2n

2

2 and cn =
α

2n−1

1
+α

2n−1

2

2 , respectively, where α1 =

1 +
√

2 and α2 = 1 −
√

2 (see [4, 5]).
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In this paper, we investigate the properties of Lucas-balancing number and Lucas-
cobalancing number. In this investigation we find the generating function of both sequences
and their relation with balancing number.

Throughout the whole paper the balancing number starts from B1 = 1andB2 = 6,
Lucas-balancing number starts from C1 = 3 and C2 = 17and Lucas-cobalancing number
starts from c1 = 1 and c2 = 7.

2 Generating function of Lucas-balancing and Lucas- cobalancing

sequence

In this section, we introduce generating function of Lucas-balancing and Lucas-cobalancing
numbers. We use Lockwood [6] identity which expands xn + yn and applying it to Binet
form of the given sequence,

xn + yn = (x + y)n +

j

n/2
k

∑

k=1

(−1)k

[(

n − k

k

)

+

(

n − k − 1
k − 1

)]

(xy)
k
(x + y)n−2k (3)

where bmc denotes the floor of real number m, that is, greatest integer less than or equal
to m.

Theorem 2.1 The generating function of Lucas-balancing number is

n
∑

k=0

[(

2n− k

k

)

+

(

2n − k − 1
k − 1

)]

22n−2k−1,

where we define

(

r

−1

)

= 0.

Proof Considering the Binet form of Lucas-balancing number and simplifying it using (3),
we get the generating function of Lucas-balancing number as

Cn =

22n +
n
∑

k=1

(−1)k

[(

2n − k

k

)

+

(

2n − k − 1
k − 1

)]

(−1)
k

22n−2k

2

=
n
∑

k=0

[(

2n − k

k

)

+

(

2n − k − 1
k − 1

)]

22n−2k−1

where we define

(

r

−1

)

= 0. This proved the theorem. 2

Theorem 2.2 The generating function of Lucas-cobalancing number is

cn =

n−1
∑

k=0

[(

(2n − 1) − k

k

)

+

(

(2n − 1) − k − 1
k − 1

)]

22n−2k−2,

where we define

(

r

−1

)

= 0.
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Proof Considering the Binet form of Lucas-cobalancing number and again simplifying it
using (3), we get the generating function of Lucas-cobalancing number as

cn =

n−1
∑

k=0

[(

(2n − 1) − k

k

)

+

(

(2n − 1) − k − 1
k − 1

)]

22n−2k−2

where we define

(

r

−1

)

= 0. This proved the theorem. 2

3 Connection between balancing, Lucas-balancing and Lucas- cobal-

ancing sequence

In this section, we give an important theorem that links Lucas-balancing and Lucas-
cobalancing through a recurrence relation and later, we introduce some of its properties.
Throughout this section we have α1 = 1 +

√
2, α2 = 1 −

√
2 and α1α2 = −1.

Rationalizing α1, we get

α1 = 1 +
√

2 =
(

1 +
√

2
)

(

1 −
√

2

1 −
√

2

)

=
−1

1 −
√

2
= −α−1

2 .

Theorem 3.1 The sequence of Lucas-balancing and Lucas-cobalancing satisfy recurrence
relation Cn − Cn−1 = 2cn, where n ∈ N .

Proof Considering Binet form of Lucas-balancing and Lucas-cobalancing number and sim-
plifying Cn − Cn−1,

Cn − Cn−1 =
α2n

1 + α2n
2

2
− α2n−2

1 + α2n−2
2

2
.

Since α1 = −α−1
2 we simplify above equation as follows,

α2n
1

(

1 − α−2
1

)

+ α2n
2

(

1 − α−2
2

)

2
=

α2n

1

(

1 −
(

1 −
√

2
)2
)

+ α2n

2

(

1 −
(

1 +
√

2
)2
)

2

=
−2α2n

1

(

1 −
√

2
)

− 2α2n

2

(

1 +
√

2
)

2

=
−2α2n

1

(

−α−1
1

)

− 2α2n
2

(

−α−1
2

)

2

= 2

(

α2n−1
1 + α2n−1

2

2

)

= 2cn. 2

Theorem 3.2 For any positive integer n we have

c2
n =

C2n−1 − 1

2
.
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Proof Evaluating c2
n using Binet form of Lucas-cobalancing number we get,

c2
n =

(

α2n−1
1 + α2n−1

2

2

)2

=
α

2(2n−1)
1 + α

2(2n−1)
2 + 2α2n−1

1 α2n−1
2

4

=
α

2(2n−1)
1 + α

2(2n−1)
2 − 2

4
=

C2n−1 − 1

2
. 2

Corollary 3.1 For any positive integer n we have

(1)

n
∑

i=1

ci =
Cn − 1

2

(2)

n
∑

i=1

c2
i =

B2n − 2n

4
.

Proof For (1), consider relation from Theorem 3.1 that is Ci − Ci−1 = 2ci and taking

summation from 1 to n we get Cn = 2
n
∑

i=1

ci + 1, by assuming C0 = 1 .

Alternatively,

n
∑

i=1

ci =

(

α1
1 + α3

1 + α5
1 + ... + α2n−1

1

2

)

+

(

α1
2 + α3

2 + α5
2 + ... + α2n−1

2

2

)

=
α1

2

(

α2n
1 − 1

α2
1 − 1

)

+
α2

2

(

1 − α2n
2

1 − α2
2

)

.

Now simplifying above equation using α1 = −α−1
2 , we get

2
(

α2n
1 + α2n

2

)

− 4

8
.

Therefore, using Binet form of Lucas-cobalancing number, above equation reduces to
1
2
(Cn − 1).

For (2) taking summation from 1 to n for 2c2
n = C2n−1 − 1 in Theorem 3.2 we get,

2

n
∑

i=1

c2
i =

n
∑

i=1

C2n−1 − n. (4)

Now we evaluate
n
∑

i=1
C2n−1,

n
∑

i=1

C2n−1 = C1 + C3 + ... + C2n−1

=

(

α2
1 + α6

1 + α10
1 + ... + α2n−1

1

2

)

+

(

α2
2 + α6

2 + α10
2 + ... + α2n−1

2

2

)

.
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Since, the series are in geometric progressions where α1 = 1+
√

2 > 1 and α2 = 1−
√

2 < 1.

So, we get summation of
n
∑

i=1
C2n−1as

α2
1

(

α4n
1 − 1

α4
1 − 1

)

+ α2
2

(

1 − α4n
2

1 − α4
2

)

.

Using α1 = −α−1
2 and

Bn =
α2n

1 − α2n
2

4
√

2
,

simplifying the above equation we get B2n

2
. So, putting this in equation (4) reduces it to

B2n − 2n

4
.

This proved our corollary. 2

Theorem 3.3 For any positive integer n we have

(1) Cn−1Cn+1 =
C2n + 17

2

(2) cn−1cn+1 =
C2n−1 − 17

2

(3) Cn−1Cn+1 + cn−1cn+1 =
C2n + C2n−1

2
Proof

For (1), considering Binet form of Lucas-balancing number and evaluating Cn−1Cn+1,

(

α
2(n−1)
1 + α

2(n−1)
2

2

)(

α
2(n+1)
1 + α

2(n+1)
2

2

)

.

Now simplifying above equation using α1 = −α−1
2 we get 1

2 (C2n + 17).
For (2), considering Binet form of Lucas-cobalancing number and evaluating cn−1cn+1,

(

α2n−3
1 + α2n−3

2

2

)(

α2n+1
1 + α2n+1

2

2

)

.

Now simplifying the above equation using α1 = −α−1
2 , we get 1

2 (C2n−1 − 17).
For (3), just add (1) and (2). 2

Theorem 3.4 For any positive integer n we have

(1) lim
n→∞

Cn+1

Cn

= 3 + 2
√

2

(2) lim
n→∞

cn+1

cn

= 3 + 2
√

2
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Proof

For (1), we consider Binet form of Lucas-balancing number,

lim
n→∞

Cn+1

Cn

=
α

2(n+1)
1 + α

2(n+1)
2

α2n
1 + α2n

2

.

Sinceα1 > α2, so dividing above equation by α2n
1 we getα2

1 = 3 + 2
√

2.
For (2), we consider Binet form of Lucas-cobalancing number,

lim
n→∞

cn+1

cn

=
α2n+1

1 + α2n+1
2

α2n−1
1 + α2n−1

2

.

Sinceα1 > α2, so dividing above equation by α2n
1 we get α2

1 = 3 + 2
√

2. This proved our
theorem. 2

Theorem 3.5 For any positive integer n we have

(1)
n
∑

i=1

Ci =
cn+1 − 1

2

(2)

n
∑

i=1

C2
i

=
c2(n+1) + c2n+1 − 8 + 16n

32

Proof For (1), consider the Binet form of Lucas-balancing number and evaluating
n
∑

i=1
Ci,

n
∑

i=1

Ci =

(

α2
1 + α4

1 + α6
1 + ... + α2n

1

2

)

+

(

α2
2 + α4

2 + α6
2 + ... + α2n

2

2

)

=
α2

1

2

(

α2n
1 − 1

α2
1 − 1

)

+
α2

2

2

(

1 − α2n
2

1 − α2
2

)

.

Simplifying the above equation using α1 = −α−1
2 we get1

2(cn+1 − 1).

For (2), we have C2
i = 1

4(α4n
1 + α4n

4 + 2), so evaluating
n
∑

i=1
C2

i

n
∑

i=1

C2
i

=

(

α4
1 + α8

1 + α12
1 + ... + α4n

1

)

+
(

α4
2 + α8

2 + α12
2 + ... + α4n

2

)

+ 2n

4
.

Simplifying the above equation using Binet form of Lucas-balancing number and α1 = −α−1
2

we get
C2(n+1) − C2n − 16

64
+

n

2
. (5)

Now, by Theorem 3.1 we get C2(n+1) − C2n+1 = 2c2(n+1) and C2n+1 − C2n = 2c2n+1

which reduces the equation (5) to

c2(n+1) + c2n+1 − 8 + 16n

32
.

This completes the proof. 2
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Lemma 3.1 2cnCn−1 = c2n−1 + 1, n ∈ N .

Proof Considering cnCn−1 and evaluating it using Binet form of Lucas-balancing and
Lucas-cobalancing number

(

α2n−1
1 + α2n−1

2

)

(

α
2(n−1)
1 + α

2(n−1)
2

)

4
=

α4n−3
1 + α4n−3

2 + α2n−1
1 α2n−2

2 + α2n−1
1 α2n−2

2

4

=
α4n−3

1 + α4n−3
2 + 2

4
=

c2n−1 + 1

2

This proved the lemma. 2

Theorem 3.6 For any positive integer n, balancing, Lucas-balancing and Lucas-cobalancing
sequence satisfy recurrence relation Cn + cn = 4Bn.

Proof By the definition of Lucas-balancing we get recurrence relation C2
n = 8B2

n + 1, now
simplifying it using Theorem 3.1 and C2

n−1 = 8B2
n−1 + 1 we get

C2
n−1 + 4c2

n + 4Cn−1cn = 8B2
n + 1.

Then by using Theorem 3.2, Lemma 3.1 and B2n−1 = B2
n − B2

n−1 (see [7]) the above
equation is further simplified to C2n−1 + c2n−1 = 4B2n−1. Replacing n by

(

2n+1
2

)

− 1 in
previous equation we get C2n + c2n = 4B2n. So we can generalize the relation between
balancing, Lucas-balancing and Lucas-cobalancing sequence through a recurrence relation
Cn + cn = 4Bn. This completes the proof. 2

4 Conclusion

In this paper, we investigate some new properties of Lucas-balancing and Lucas-cobalancing.
We connect balancing number, Lucas-balancing and Lucas-coblancing through a recurrence
relation.
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