Finite p-groups in which each absolute central automorphism is elementary abelian

Zahra Kaboutari Farimani, Mohammad Mehdi Nasrabadi
Department of Mathematics, University of Birjand, Birjand, Iran.
e-mail: kaboutarizf@gmail.com, kaboutari@birjand.ac.ir, mnasrabadi@birjand.ac.ir.

Abstract In this paper we give necessary and sufficient conditions on a p-group G for each absolute central automorphism of G to be elementary abelian. Also we classify the absolute centre of extraspecial p-groups and show that the absolute central automorphisms of these groups are elementary abelian.

Keywords absolute centre; absolute central automorphisms; elementary abelian; finite p-groups; extraspecial p-groups.

2010 Mathematics Subject Classification 20D45, 20D15.

1 Introduction and basic lemmas

Throughout this paper p denotes a prime number. Let G be a group. We denote C_m, G', $Z(G)$, $L(G)$, $\exp(G)$, $\Hom(G,H)$, $\Aut(G)$ and $\Inn(G)$, as the cyclic group of order m, the commutator subgroup, the centre, the absolute centre, the exponent, the group of homomorphisms of G into an abelian group H, the full automorphism group and the inner automorphism group of G, respectively. An automorphism α of G is called a central automorphism if and only if it induces the identity on $G/Z(G)$. The central automorphisms of G, denoted by $\Aut_c(G)$, fix G' elementwise and form a normal subgroup of the full automorphism group of G. The properties of $\Aut_c(G)$ are studied by many authors, see for instance [1], [2] and [3]. Hegarty in [4] generalized the concept of centre into absolute centre. The absolute centre of a group G, $L(G)$, is the subgroup consisting of all those elements that are fixed under all automorphisms of G. Also he introduced the concept of the absolute central automorphisms. An automorphism β of G is called an absolute central automorphism if and only if it acts trivially on the factor group $G/L(G)$, or equivalently, $x^{-1}\beta(x) \in L(G)$ for each $x \in G$. We denote the set of all absolute central automorphisms of G by $\Aut_l(G)$. Notice that $\Aut_l(G)$ is a normal subgroup of $\Aut(G)$ contained in $\Aut_c(G)$. In 2006 Jafari [5] gave necessary and sufficient conditions on a finite purely nonabelian p-group G for the group $\Aut_l(G)$ to be elementary abelian. In this paper we give conditions on a p-group G such that $\Aut_l(G)$ to be elementary abelian.

The extraspecial p-groups are of great importance in the investigation of finite p-groups. Finally upon determining the absolute centre of extraspecial p-groups, we prove absolute central automorphisms of these groups are elementary abelian.

Here we give two basic lemmas that will be used in the proof of the results.

Lemma 1 [6, Lemma 2.1] Let G be a finite nilpotent group of class 2. Then

(i) $G' \leq Z(G)$,
(ii) $\exp(G') = \exp(G/Z(G))$.

Lemma 2 [6, Lemma 2.2] Let A, C and U be abelian groups.
(i) \(\text{Hom}(A, C \times U) \cong \text{Hom}(A, C) \times \text{Hom}(A, U) \),
(ii) \(\text{Hom}(A \times C, U) \cong \text{Hom}(A, U) \times \text{Hom}(C, U) \),
(iii) \(\text{Hom}(C_m, C_n) \cong C_d \), where \(d = \gcd(m, n) \).

2 Absolute central automorphisms that are elementary abelian

In this section, we firstly state some definitions and elementary results which shall be used in the main results.

Definition 1 [4] Let \(G \) be a group. The subgroup \(L(G) \), consisting of all elements of \(G \) fixed by every automorphism of \(G \) is called the absolute centre of \(G \). Then

\[
L(G) = \{ g \in G \mid g^{-1} \alpha(g) = 1, \forall \alpha \in \text{Aut}(G) \}.
\]

Clearly, \(L(G) \) is a central characteristic subgroup of \(G \).

Definition 2 [4] An automorphism \(\alpha \) of \(G \) is called absolute central, if \(g^{-1} \alpha(g) \in L(G) \) for each \(g \in G \). We denote the set of all absolute central automorphisms of \(G \) by \(\text{Aut}_1(G) \). \(\text{Aut}_1(G) \) is a normal subgroup of \(\text{Aut}(G) \) contained in \(\text{Aut}_c(G) \).

Lemma 3 [6, Lemma 2.7] Let \(G \) be a finite group. Then \(G/L(G) \) is abelian if and only if \(\text{Inn}(G) \leq \text{Aut}_1(G) \).

Lemma 4 [7, Proposition 1] Let \(G \) be a group. Then \(\text{Aut}_1(G) \cong \text{Hom}(G/L(G), L(G)) \). So if \(G \) is a \(p \)-group, then \(\text{Aut}_1(G) \) is also a \(p \)-group.

As any homomorphism \(f : G/L(G) \to L(G) \) induces a homomorphism \(\bar{f} : G/G'L(G) \to L(G) \), we see that \(|\text{Hom}(G/L(G), L(G))| = |\text{Hom}(G/G'L(G), L(G))| \).

Now we give the following main results.

Lemma 5 Let \(G \) be a \(p \)-group such that \(G/L(G) \) is abelian. If \(L(G) \) is elementary abelian of rank \(s \), then \(\text{Aut}_1(G) \) is elementary abelian of order \(p^s \) that \(t = \text{rank}(G/L(G)) \).

Proof It follows from lemmas 2 and 4.

Lemma 6 Let \(G \) be a non-abelian \(p \)-group such that \(G/L(G) \) is abelian. If \(\text{Aut}_1(G) \) is elementary abelian, then \(\exp(G') = p \).

Proof Since \(G/L(G) \) is abelian, hence, \(\text{Inn}(G) \leq \text{Aut}_1(G) \). Thus \(\text{Inn}(G) \) is elementary abelian. Hence \(\exp(G/Z(G)) = p \). Also \(G \) is nilpotent of class 2 and so \(\exp(G') = \exp(G/Z(G)) = p \).

In Theorem 1, we give necessary and sufficient conditions on \(p \)-group \(G \) that \(\text{Aut}_1(G) \) is elementary abelian. First, notice that for a finite group \(G \) and central subgroup \(M \) of \(G \), if \(f \) be a homomorphism from \(G \) to \(M \), we can define an endomorphism \(\sigma_f \) of \(G \) such that \(\sigma_f(x) = xf(x) \). Also \(\sigma_f \) is an automorphism of \(G \) if and only if for every non-trivial element \(g \in M \), \(f(g) \neq g^{-1} \).

Recall that when \(\text{Aut}_1(G) \) is trivial, clearly it is elementary abelian. So from now on, we discuss on \(p \)-group \(G \) in which \(\text{Aut}_1(G) \) is non-trivial.

Theorem 1 Let \(G \) be a finite \(p \)-group. \(\text{Aut}_1(G) \) is elementary abelian if and only if \(\exp(L(G)) = p \) or \(\exp(G/G'L(G)) = p \).
Proof Suppose \(\exp(L(G)) = p \) and \(s = \text{rank}(L(G)) \) and also \(t = \text{rank}(G/G'L(G)) \). By lemmas 2 and 4 we have

\[
\text{Aut}_t(G) \cong \text{Hom}\left(\frac{G}{L(G)}, L(G)\right)
\cong \text{Hom}\left(\frac{G}{G'L(G)}, L(G)\right)
\cong \text{Hom}(C_{p^{2s+1}} \times C_{p^{2s}} \times \cdots \times C_{p^{2s+1}}, C_p \times C_p \times \cdots \times C_p)
\cong C_p \times C_p \times \cdots \times C_p.
\]

So \(\text{Aut}_t(G) \) is elementary abelian. Similarly, if \(\exp(G/G'L(G)) = p \), the theorem is true.

Conversely, suppose \(\text{Aut}_t(G) \) is an elementary abelian \(p \)-group with \(\exp(L(G)) > p \) and \(\exp(G/G'L(G)) > p \). Assume \((l) \) and \(\langle xG'L(G) \rangle \) are cyclic direct factors of \(L(G) \) and \(G/G'L(G) \) with maximum possible orders, respectively. Define

\[
H = \{ \sigma_f : f \in \text{Hom}(\langle xG'L(G) \rangle, \langle l \rangle) \}.
\]

According to the previously-mentioned points, \(\sigma_f \) is an automorphism of \(G \). Also for each \(x \in G, x^{-1}\sigma_f(x) \in L(G) \) and so \(H \) is a subset of \(\text{Aut}_t(G) \). Now since \(\sigma_f \) acts trivially on \(L(G) \), by some calculations one can see that \(H \) is a cyclic subgroup of \(\text{Aut}_t(G) \) of order at least \(p^2 \). This is a contradiction. \(\square \)

We end this section with some examples of groups that satisfy the conditions of Theorem 1.

Example 1
(1) If \(G \) is the dihedral group of order 8, \(\exp(L(G)) = 2 \) and \(\text{Aut}_t(G) \) is elementary abelian.
(2) \(G = \langle a, b \mid a^{27} = 1, ab = b^{-2}, a^{-1}b^{-4}a = b^2, [b, a] = b^3 \rangle \), a semidirect product of \(C_9 \) and \(C_{27} \), is an example of a group satisfying the conditions of Theorem 1.

In the following, we give an account of \(p \)-groups whose absolute central automorphisms are elementary abelian.

3 The extraspecial \(p \)-groups

A finite \(p \)-group \(G \) is special if \(G \) is elementary abelian or \(Z(G) = G' = \Phi(G) \) and a non-abelian special \(p \)-group \(G \) is extraspecial if \(Z(G) = G' = \Phi(G) \cong C_p \). An extraspecial \(p \)-group \(G \) is the central product of \(n \geq 1 \) non-abelian subgroups of order \(p^3 \) and \(|G| = p^{2n+1} \). For more information you can see [8].

There are two isomorphism classes of extraspecial \(p \)-groups. When \(p = 2 \), \(G \) is of exponent 4 and when \(p \) is odd, one of these isomorphism classes has exponent \(p \) and the other has exponent \(p^2 \). Any extraspecial \(p \)-group \(G \) has generators \(x_1, x_2, \ldots, x_{2n} \) satisfying the following relations where \(z \) is a fixed generator of \(Z(G) \).

1. \([x_{2i-1}, x_{2i}] = z, 1 \leq i \leq n \)
2. \([x_i, x_j] = 1, 1 \leq i, j \leq n \mid i - j \mid > 1 \)
3. \(x_i^p \in Z(G), \quad 1 \leq i \leq 2n. \)

In 1972 Winter [9] gave the structure of the automorphism group of extraspecial \(p \)-groups. Here we give those results of Winter [9].

Theorem 2 [9, Theorem 1] Let \(G \) be an extraspecial \(p \)-group of order \(p^{2n+1} \) and let \(H \) be a normal subgroup of \(\text{Aut}(G) \) which acts trivially on \(Z(G) \). Then \(\text{Aut}(G) = \langle \theta \rangle H \) where \(\theta \) has order \(p - 1 \), \(H \cap \langle \theta \rangle = 1 \) and \(H/\text{Inn}(G) \) is isomorphic to a subgroup of symplectic group \(\text{Sp}(2n, p) \).

Here we define the automorphism \(\theta \) in Theorem 2. Let \(m \) be a primitive root mod \(p \) with \(0 < m < p \). The automorphism \(\theta \) is defined by \(\theta(x_{2i-1}) = x_{2i-1}^m \) and \(\theta(x_{2i}) = x_{2i} \), for \(1 \leq i \leq n \) and \(\theta(z) = z^m \).

Recall for \(p = 2 \), \(m = 1 \) and if \(p \) is odd, then \(|m| \geq 2 \). Now in the theorem below we determine the absolute centre of extraspecial \(p \)-groups.

Theorem 3 Let \(G \) be an extraspecial \(p \)-group.

(I) if \(p = 2 \) then \(L(G) \cong C_2 \).

(II) if \(p \) is odd then \(L(G) \) is trivial.

Proof Let \(G \) be an extraspecial \(p \)-group. Since \(L(G) \leq Z(G) \cong C_p \), then either \(L(G) \cong C_p \) or \(L(G) = \langle 1 \rangle \).

(I) let \(p = 2 \). By Theorem 2, \(\text{Aut}(G) = \langle \theta \rangle H \) where \(H \) acts trivially on \(Z(G) \). Also \(m = 1 \). Thus \(\theta(z) = z \) and so each automorphism of \(G \) fixes the centre elementwise.

Hence \(L(G) = Z(G) \cong C_2 \).

(II) let \(p \) be odd. We know \(m \neq 1 \) and \(0 < m < p \). Hence \(\theta(z) = z^m \neq z \). Therefore \(\text{Aut}(G) \) does not fix the centre of \(G \) elementwise and so \(L(G) \leq Z(G) \). Thus \(L(G) \) is trivial.

Now by determining the absolute centre of extraspecial \(p \)-groups, we can see for \(p \) odd, \(\text{Aut}(G) \) is trivial. Also for \(p = 2 \), \(\exp(L(G)) = 2 \) and by Theorem 1, \(\text{Aut}(G) \) is elementary abelian. Therefore in both cases, \(\text{Aut}(G) \) is elementary abelian.

References

Finite p-groups in which each absolute central automorphism is elementary abelian.

