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1 Introduction

Integral equations have been one of the principal instruments in many different fields of
science like applied mathematics physics, biology and engineering [1, 2]. Also integral
equations are encountered in numerous applications in various areas [3]. In addition, they
arise naturally in applications, in many fields of mathematics, science and technology [4].
They have studied both at the theoretical and practicallevels [5].

Solution of integral equations by numerical methods have grown widely grown in the last
25 years. The methods of integral equation are strongly used for treating many problems
in mathematical physics [6]. Integral equations have many advantages witnessed by the
increasing frequency of the integral equations in the literature and in many areas because
some problems have their mathematical representation appear directly [7]. The Volterra-
Fredholm integral equations appear from parabolic boundary value problems [6]. Integral
equation focused on the numerical method of solution [8].

Jerri [9] was discussed fixed point iteration method to solve linear Volterra integral
equation. Sulaiman [10] used fixed point method (FPM) to solve linear Fredholm integral
equation of the second kind. Hasan [11] solved a certain system of Fredholm integral
equation of the first kind. In addition, Waz waz [12] solved a system of linear Volterra
integral equations by FPM.

The proposed method FPM and IFPM are used for obtaining the approximate solution
of system Volterra-Fredholm integral equations of the second kind. Illustrative examples
will be included to demonstrate the validity and applicability of the presented techniques
to highlight the signification of the FPM and improve fixed point method (IFPM).
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2 Definitions

Definition 1 [9] A function f : Rp → Rp is said to be Lipschtiz on B ⊆ Rp with Lipschtiz
constant L > 0 if

‖f(x) − f(y)‖ ≤ L ‖x − y‖ ,

for all x, y ∈ B for some norm ‖‖ on Rp.

Definition 2 [13] A map T is called contraction mapping on the interval [a, b] if it satisfy
the following conditions:

1. U ∈ C[a, b] → T (U) ∈ C[a, b].
2. T ∈ Lip[a, b], with Lipchitz constant, 0 < L < 1.

Definition 3 [12, 13] Let V and W be vector spaces over a field F. A function T : V → W

is called a linear transformation if it satisfies the following conditions:
1. ∀A, B ∈ V, T (A + B) = T (A) + T (B) .
2. ∀A ∈ V and r ∈ F, T (rA) = rT (A).

Definition 4 [6, 14] The integral equation

y(s) = f(s) + λ

∫ s

a

k(s, t)y(t)dt + λ∗

∫ b

a

g(s, t)y(t)dt,

is called a linear Volterra-Fredholm integral equation of the second kind, where the functions
k(s, t) and g(s, t) are called kernels of integral equation, 0 < λ < 1 and 0 < λ∗ < 1 such
that f(s), k(s, t) and g(s, t) are known functions on R = {(s, t), a ≤ t < s ≤ b} and y(s) is
unknown function.

Definition 5 [12, 15] A kernel k(s, t) is said to be a symmetric kernel if k(s, t) = k(t, s)
for all s, t ∈ R.

3 System of linear Volterra-Fredholm integral equations of the sec-

ond kind

The system of p Volterra-Fredholm integral equations of the second kind (SVFI-2) is given
as follows:

yi(s) = fi(s) +

m
∑

k=1

λik

∫ s

a

kik(s, t)yk(t)dt +

m
∑

k=1

λ∗

ik

∫ b

a

k∗

ik(s, t)yk(t)dt, (1)

for i = 1, 2, 3, ..., p.fi(s) is a continuous function on [a, b], kik(s, t) and k∗

ik
(s, t) denote the

given continuous kernel functions on R = {(s, t), a ≤ t < s ≤ b} while yi(s) is the unknown
function to be determined.

4 FPM solution for SVFI-2 with symmetric kernels

The system of linear Volterra- Fredholm integral equation of the second kind given in (1),
this system can be written as follows:

Yi = Fi +

m
∑

k=1

λikKikYk +

m
∑

k=1

λ∗

ikK∗

ikYk, (2)
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Where Yi = yi(s), Fi = fi(s), Kik = kik(s, t) and K∗

ik = k∗

ik(s, t), first, we suppose that the
initial solution Y 0

i = Fi, then the first approximation is

Y 1
i = Fi +

m
∑

k=1

λikKikY 0
k

+
m

∑

k=1

λ∗

ikK∗

ikY 0
k

, (3)

For second approximation, substitute Y 1
i into (3) we get

Y 2
i = Fi +

m
∑

k=1

λikKikY 1
k

+

m
∑

k=1

λ∗

ikK∗

ikY 1
k

, (4)

In general, the fixed-point method can be written as

Y r+1
i = Fi +

m
∑

k=1

λikKikY r
k

+

m
∑

k=1

λ∗

ikK∗

ikY r
k

, for r = 1, 2, 3, ..., max (5)

where max is the maximum number of iterations.
If the relationship defined in Equation (5) converges then

lim
n→∞

|Yi − Y r
i | = 0, (6)

Y r+1
i = M(Y r

i ), (7)

with

M(Y r
i ) = Fi +

m
∑

k=0

λikKikY r
k +

m
∑

k=0

λ∗

ikK∗

ikY r
k

, (8)

where Yk = yk(s), Y r
i = yr

k(s).
The condition for the convergence property of the FPM is

|λik| <
1

Mik

,

where

Mik =

√

∫ b

a

∫ b

a

[kik(s, t)]2ds dt and |λ∗

ik| <
1

M∗

ik

where M∗

ik =

√

∫ b

a

∫ b

a

[k∗

ik(s, t)]
2ds dt.

Algorithm for FPM

Step 1 Let Y 0
i = Fi, for i = 1, 2, 3, ...p from equation (1).

Step 2 Find Y r+1
i from Equation (7), r = 1, 2, 3, ..., max .

Step 3 Compute the value of absolute error given by er
i =

∣

∣yi(s) − yr
i
(s)

∣

∣.
Step 4 The approximate solutions converges if

lim
r→∞

|yi(s) − yr
i (s)| = ε,

where ε is a value close to 0.
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Example 1 Consider the following system

y1(s) = 2 sin(s) −

∫ s

0

y2(t)dt,

y2(s) = cos(s) − 0.4597 +

∫ 1

0

y1(t)dt,

with the exact solutions y1(s) = sin(s) and y2(s) = cos(s).

Solution. By applying FPM and its program, we obtain the approximate solutions of y1(s)
and y2(s) as follows and shown in Table 1.

y0
1(s) = 2 sin(s)

y0
2
(s) = cos(s) − 0.4597

y1
1(s) = sin(s) + (0.4597)s

y1
2(s) = cos(s) + 0.4596

y2
1(s) = sin(s) − (0.4597)s

y2
2(s) = cos(s) + 0.2298

y3
1(s) = sin(s) − (0.2298)s

y3
2(s) = cos(s) − 0.2298

Table 1: FPM results for example 1 and compared to the exact solution

s r

Exact
solution of
y1(s) = sin(s)

Approximate
values of
y1(s)

Absolute error
e
r

1
=

˛

˛y1(s) − ∗
y

r

1
(s)

˛

˛

Exact
solution of
y2(s) = cos(s)

Approximate
values of
y2(s)

Absolute error
e
r

2
=

˛

˛y2(s) − ∗
y

r

2
(s)

˛

˛

0.2
0
2
4
6
8

10
12
14
16
18
20

0.19866933 0.39733866
0.24463910
0.19292310
0.19938760
0.19866812
0.19866501
0.19866998
0.19866945
0.19866939
0.19866933
0.19866933

1.1986×10−1

4.5969×10−2

5.7462×10−3

7.1827×10−4

2.1212×10−5

4.3245×10−6

6.2156×10−7

1.2678×10−7

6.7693×10−8

8.4678×10−9

2.4468×10−9

0.98006657 0.52036888
1.03752878
0.97288380
0.98096442
0.98084223
0.98009944
0.98006933
0.98006600
0.98006679
0.98006657
0.98006657

4.5969×10−1

5.7462×10−2

7.1827×10−3

8.9784×10−4

2.2346×10−4

3.3134×10−5

3.2355×10−6

5.7762×10−7

2.2759×10−7

4.6793×10−8

5.6784×10−9

Figures 1(a) and 1(b) show a comparison between the exact and the approximate solu-
tions, given in Example 1.

Example 2 Consider the following system

y1(s) = 1 + s +
1

2

∫ s

0

y2(t)dt −

∫ 1

0

(st)y1(t)dt,

y2(s) = 2 + s +

∫ s

0

y1(t)dt −

∫ 1

0

(st)y2(t)dt,

with the exact solutions y1(s) = esand y2(s) = 2es.
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Figure 1(a): Graph y1(s) = sin(s)

Figure 1(b): Graph y2(s) = cos(s)
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Solution By applying FPM and its program, we obtain the approximate solutions of y1(s)
and y2(s) as follows and shown in Table 2.

y0
1(s) = 1 + s

y0
2(s) = 2 + s

y1
1(s) = 1 + 1.1667s + 0.25s2

y1
2(s) = 2 + (2.1867)s + (0.5)s2

y2
1(s) = 1 + (1.2153)s + (0.5417)s2 + (0.0833)s3

y2
2(s) = 2 + (2.0856)s + (2.1667)s2 + (0.5)s3

y3
1(s) = 1 + (0.9984)s + (0.0120)s2 + (0.3611)s3 + (0.0625)s4

y3
2(s) = 2 + (1.9981)s + (1.0243)s2 + (0.6667)s3 + (0.1250)s4

Table 2: FPM results for example 2 and compared to the exact solution

s r
Exact
solution of
y1(s) = e

s

Approximate
value of
y1(s)

Absolute error
e
r

1
=

˛

˛y1(s) − y
r

1
(s)

˛

˛

Exact
solution of
y1(s) = 2e

s

Approximate
value of
y2(s)

Absolute error
e
r

2
=

˛

˛y2(s) − y
r

2
(s)

˛

˛

0.2
0
2
4
6
8

10
12
14
16
18
20

1.22140275 1.20000000
1.23205555
1.22134014
1.22140196
1.22140331
1.22140276
1.22140275
1.22140275
1.22140275
1.22140275
1.22140275

2.1402×10−2

1.0652×10−2

6.2613×10−5

7.9443×10−6

5.6095×10−7

5.8513×10−8

1.5373×10−10

3.5835×10−11

8.5912×10−12

3.0213×10−13

3.4421×10−14

2.44280551 2.20000000
2.45438888
2.44276323
2.44280090
2.44280607
2.44280552
2.44280551
2.44280551
2.44280551
2.44280551
2.44280551

2.4280×10−1

1.1583×10−2

4.2278×10−5

4.6111×10−6

5.5970×10−7

5.0802×10−9

6.2804×10−10

3.2524×10−11

7.7321×10−13

1.6325×10−14

2.5534×10−15

Figures 2(a) and 2(b) show a comparison between the exact and the approximate solu-
tions, given in Example 2.

5 IFPM to solve SVFI-2 with symmetric kernels

Improved fixed-point method is obtained by adding αiYi in both sides of Equation (7) where
αi 6= −1:

(1 + αi)Yi = αiYi + M(Yi) (9)

we get

Yi =
1

1 + αi

M(Yi) +
αi

1 + αi

Yi = Mαi
(∗Yi). (10)

If ∗Yi verifies Equation (7) then it also verifies Equation (10). This means ∗Yi is a solution
of Equation (5) expressed in the iterative form, as follows:

∗Y r+1
i = Mαi

(∗Y r
i
), (11)
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Figure 2(a): Graph y1(s) = es

Figure 2(b): Graph y2(s) = 2es



198 Talaat I. Hasan, Shaharuddin Salleh and Nejmaddin A. Sulaiman

The approximate solutions in Equation (11) should converge faster than the iterative form
defined in Equation (7) to the exact solution of Equation (1).

The selection for the optimal values of the scalar αi is based on the following role

αi =
(νi + ρi)

2
, (12)

where
νi = sup

[a,b]

{M(Yi) − M(Yi−1)} and ρi = inf
[a,b]

{M(Yi) − M(Yi−1)} . (13)

Algorithm for IFPM

Step 1 Find the optimal values of the scalar αi in Equations (12) and (13).
Step 2 Let Y 0

i = Fi , for i = 1, 2, 3, ..., p, from Equation (1) which is the initial solution.
Step 3 Adding αiYi to both sides of Equation (7).
Step 4 Compute ∗Y r+1

i From Equation (11).
Step 5 Calculate er

i
=

∣

∣yi(s) −
∗yr

i
(s)

∣

∣.
Step 6 The approximate solutions converges faster if lim

r→∞

|yi(s) − yr
i (s)| = ε.

6 Numerical examples about SVFI-2 and results by using IFPM

The method of section 5 is very useful for finding the numerical solutions of SVFI-2. The
computations associated with the examples were performed using MATLAB version 12.

Example 3 Find approximate solution ofa SVFI-2, in example 1 by using IFPM.

Solution Applying the numerical technique which is IFPM, we obtained the results for
approximate solutions of y1(s) and y2(s), where the optimal values are α1 = −0.190 and
α2 = 1.4597, as shown in Table 3.

y0
1(s) = 2 sin(s)

y0
2(s) = cos(s) − 0.4597

y1
1(s) = (0.7654) sin(s) + (0.5675)s

y1
2(s) = cos(s) − 0.0859

y2
1(s) = (1.0550) sin(s) − (0.0271)s

y2
2(s) = cos(s) + 0.0205

y3
1(s) = (0.9871) sin(s) − (0.0190)s

y3
2(s) = cos(s) + 0.0170

Figures 3(a) and 3(b) show a comparison between the exact and the approximate solu-
tions, given in Example 3.

Example 4 Find approximate solution ofa SVFI-2 in example 2 by using IFPM.

Solution Applying the numerical technique which is IFPM we obtained the results for
approximate solutions of y1(s) and y2(s), where the optimal values are α1 = 0.128and
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Table 3: IFPM results for example 3 and compared to the exact solution

s r
Exact
solution of
y1(s) = sin(s)

Approximate
Values of
y1(s)

Absolute error
e
r

1
=

˛

˛y1(s) − ∗
y

r

1
(s)

˛

˛

Exact
solution of
y2(s) = cos(s)

Approximate
Values of
y2(s)

Absolute error
e
r

2
=

˛

˛y2(s) −
∗
y

r

2
(s)

˛

˛

0.2
0
2
4
6
8

10
12
14
16
18
20

0.19866933 0.39733866
0.20418913
0.19597184
0.19887275
0.19868480
0.19866538
0.19866951
0.19866936
0.19866932
0.19866933
0.19866933

1.9866×10−1

5.5198×10−3

2.6974×10−3

2.0342×10−4

1.3549×10−5

3.9434×10−6

1.8462×10−7

1.0472×10−8

5.3205×10−9

1.0570×10−10

5.6451×10−11

0.98006657 0.52036888
1.00060762
0.98386228
0.97945051
0.98007752
0.98007323
0.98006581
0.98006656
0.98006658
0.98006657
0.98006657

4.5969×10−1

2.0541×10−2

3.7957×10−3

6.1606×10−4

1.0946×10−5

6.6574×10−6

7.6728×10−7

1.0471×10−8

1.0574×10−9

8.7082×10−10

4.9588×10−11

Figigure 3(a): Graph y1(s) = sin(s)
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Figure 3(b): Graph y2(s) = cos(s)

α2 = 0.315, as shown in Table 4.

y0
1(s) = 1 + s

y0
2(s) = 2 + s

y1
1(s) = 1 + (1.1478)s + (0.2216)s2

y1
2(s) = 12 + (1.8872)s + (0.3802)s2

y2
1(s) = 1 + (1.0717)s + (0.4434)s2 + (0.0562)s3

y2
2(s) = 2 + (2.0201)s + (0.8086)s2 + (0.0964)s3

y3
1(s) = 1 + (1.0265)s + (0.4980)s2 + (0.1259)s3 + (0.0107)s4

y3
2(s) = 2 + (2.0204)s + (0.9618)s2 + (0.2281)s3 + (0.0183)s4

Figures 4(a) and 4(b) show a comparison between the exact and the approximate solu-
tions, given in Example 4.

7 Fixed point and contractive mapping

The original iterative method is proposed as follows:

Y r+1
i (s) = Fi(s) +

m
∑

k=0

λKikY r
i

+

m
∑

k=0

λ∗K∗

ikY r
i , for r = 0, 1, 2, ...,max (14)
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Table 4: IFPM results for example 4 and results compared to the exact solution

s r
Exact
solution of
y1(s) = e

s

Approximate
Value of
y1(s)

Absolute error
e
r

1
=

˛

˛y1(s) − ∗
y

r

1
(s)

˛

˛

Exact
solution of
y1(s) = 2e

s

Approximate
Value of
y2(s)

Absolute error
e
r

2
=

˛

˛y2(s) − ∗
y

r

2
(s)

˛

˛

0.2
0
2
4
6
8

10
12
14
16
18
20

1.22140275 1.20000000
1.22163981
1.22132818
1.22140268
1.22140275
1.22140275
1.22140275
1.22140272
1.22140275
1.22140225
1.22140275

2.1402×10−2

2.3705×10−4

7.4575×10−5

7.7778×10−7

4.8578×10−9

4.3890×10−10

7.2264×10−11

2.3652×10−12

3.0622×10−13

9.2433×10−15

1.6952×10−17

2.44280551 2.20000000
2.44360370
2.44272708
2.44280553
2.44280551
2.44280551
2.44280551
2.44280551
2.44280551
2.44280551
2.44280551

2.4280×10−2

7.9818×10−3

7.8007×10−5

1.7745×10−7

2.3335×10−8

4.1740×10−9

6.8422×10−11

6.2924×10−13

3.0642×10−14

8.2420×10−15

1.8732×10−17

Figure 4(a): Graph y1(s) = es
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Figure 4(b): Graph y2(s) = 2es

The approach of the sequences Y r+1
i (s) to Yi(s) has been studied for solving Equation (1).

Let

T (Y r
i ) = Fi(s) +

m
∑

k=0

λKikY r
i

+

m
∑

k=0

λ∗K∗

ikY r
i . (15)

Our solution in this work has been directed toward solving Equation (1). The integral
equation (15) is searched in the following manner, the right hand side is supposed as a
transformation T on Y r

i
expressed by T (Y r

i ), when the left hand side denotes that the
transformation had left this element Y r+1

i
unchanged. That is

Y r+1
i = T (Y r

i ), (16)

which mean that the solution Y r
i which we search for the integral equation (15) expresses an

especial values in the domain of the transformation T , called that which remains unaltered
of stable under the transformation T . Each element Y r

i as defined in equation (16) is known
a fixed point of the transformation T .

Lemma 1 [12] If a map T satisfies the Lipchitz condition on the interval [a, b] then there
exists a positive constant L, such that |T (y) − T (w)| ≤ |y − w|L, for all values y, w ∈ R.
The constant L is called Lipchitz constant.

Theorem 2 [3] Every contraction mapping is a Lipschitz function on [a, b].

Theorem 3 [3] Every Lipschitz function is a continuous function on [a, b].

Theorem 4 Let T be a contraction mapping on R then:
1. The relation Y r+1 = T (Y r) has a unique exact solution Y ∗ ∈ R.
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2. For any initial solution Y 0 ∈ R the sequence defined in Equation (16)converges to Y ∗.

Proof

1. Suppose that T is a contraction mapping on R. Then T is Lipchitz function by
Theorem 2 and T is continuous function by Theorem 3. Since Y is exact solution,
then

Y ∗ = T (Y ∗) (17)

is continuous on the region R. Now we want to show that, the equation (17) has a
unique solution.
By contradiction, suppose that there exists another solution Z∗,such that Z∗ 6= Y ∗

which satisfy

Y ∗ = T (Y ∗) and Z∗ = T (Z∗)

Now

|Y ∗ − Z∗| = |T (Y ∗) − T (Z∗)| ≤ |Y ∗ − Z∗|L,

because T is Lipchitz function. Then we get

|Y ∗ − Z∗| ≤ |Y ∗ − Z∗|L,

Hence L ≥ 1 which is a contradiction to the definition of the Lipchitz constant, because
L < 1. Since T is contraction mapping on the region R, then Z∗ = Y ∗. Therefore,
Equation (16) has a unique solution.

2. By part one of this theorem we give the closure condition. That’s mean If Y 0 ∈ R

then Y d ∈ R. Now
∣

∣Y d − Y ∗

∣

∣ ≤
∣

∣T (Y d) − T (Y ∗)
∣

∣ ≤
∣

∣Y d−1 − Y ∗

∣

∣ L , also
∣

∣Y d−1 − Y ∗

∣

∣ ≤
∣

∣T (Y d−1) − T (Y ∗)
∣

∣ ≤
∣

∣Y d−2 − Y ∗

∣

∣ L2, and so on, after d-times we get

∣

∣Y d − Y ∗

∣

∣ ≤
∣

∣

∣
Y d−(d−1) − Y ∗

∣

∣

∣
Ld−1 ≤

∣

∣

∣
Y d−(d−1)−1 − Y ∗

∣

∣

∣
Ld ≤

∣

∣Y 0 − Y ∗

∣

∣Ld,

Take the limit of both sides we get

lim
d→∞

∣

∣Y d − Y ∗

∣

∣ ≤ lim
d→∞

∣

∣Y 0 − Y ∗

∣

∣ Ld .

Since 0 < L < 1, if d → ∞ then Ld → 0. That means Y d → Y ∗ for d → ∞. Hence,
the sequence defined in equation (16) converges to Y ∗. 2

8 Conclusion

In this work, we propose two methods called fixed point method and improve fixed point
method to solve SVFI-2. Several numerical examples were tested using algorithms for
FPM and IFPM for solving a system SVFI-2. The results given in Tables 1, 2, 3 and
4, indicate clearly that both methods achieve good convergence as r increases when the
error decreases. The mentioned examples demonstrated the validity and applicability of
the techniques. Finally, we concluded that IFPM converges faster than FPM as shown in
Tables 5 and 6.
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Table 5: Comparison between the absolute error of the present methods, FPM and IFPM
methods in Example 1

s r

Absolute
errors of y1(s)
by FPM

Absolute
errors of y1(s)
by IFPM

Absolute
errors of y2(s)
by FPM

Absolute
errors of y2(s)
by IFPM

Running
Time
second

0.2
0
2
4
6
8

10
12
14
16
18
20

1.1986×10−1

4.5969×10−2

5.7462×10−3

7.1827×10−4

2.1212×10−5

4.3245×10−6

6.2156×10−7

1.2678×10−7

6.7693×10−8

8.4678×10−9

2.4468×10−9

1.9866×10−1

5.5198×10−3

2.6974×10−3

2.0342×10−4

1.3549×10−5

3.9434×10−6

1.8462×10−7

1.0472×10−8

5.3205×10−9

1.0570×10−10

5.6451×10−11

4.5969×10−1

5.7462×10−2

7.1827×10−3

8.9784×10−4

2.2346×10−4

3.3134×10−5

3.2355×10−6

5.7762×10−7

2.2759×10−7

4.6793×10−8

5.6784×10−9

4.5969×10−1

2.0541×10−2

3.7957×10−3

6.1606×10−4

1.0946×10−5

6.6574×10−6

7.6728×10−7

1.0471×10−8

1.0574×10−9

8.7082×10−10

4.9588×10−11

0.019985
0.083763
0.165676
0.331369
0.388837
0.477969
0.585971
0.655434
0.754577
0.848303
0.961526

Table 6: Comparison between the absolute error of the present methods, FPM and IFPM
methods in Example 2

s r

Absolute
errors of y1(s)
by FPM

Absolute
errors of y1(s)
by IFPM

Absolute
errors of y2(s)
by FPM

Absolute
errors of y2(s)
by IFPM

Running
Time by
second

0.2
0
2
4
6
8

10
12
14
16
18
20

2.1402×10−2

1.0652×10−2

6.2613×10−5

7.9443×10−6

5.6095×10−7

5.8513×10−8

1.5373×10−10

3.5835×10−11

8.5912×10−12

3.0213×10−14

3.4421×10−15

2.1402×10−2

2.3705×10−4

7.4575×10−5

7.7778×10−7

4.8578×10−9

4.3890×10−10

7.2264×10−11

2.3652×10−12

3.0622×10−13

9.2433×10−15

1.6952×10−17

2.4280×10−1

1.1583×10−2

4.2278×10−5

4.6111×10−6

5.5970×10−7

5.0802×10−9

6.2804×10−10

3.2524×10−11

7.7321×10−13

1.6325×10−14

2.5534×10−15

2.4280×10−2

7.9818×10−3

7.8007×10−5

1.7745×10−7

2.3335×10−8

4.1740×10−9

6.8422×10−11

6.2924×10−13

3.0642×10−14

8.2420×10−15

1.8732×10−17

0.017213
0.097263
0.203957
0.347614
0.513815
0.722167
0.964843
1.230646
1.547392
1.877719
2.237260
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