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Abstract From a linear program and its asymmetric dual, invariant. primal and dual
problems are constructed. Regular mappings are defined between the solution spaces of
the original and invariant problems. The notion of centrality is introduced and subsets
of regular mappings are shown to be inversely related surjections of central elements,
thus representing the original problems as invariant problems. A fixed-point problem
involving an idempotent symmetric matrix is constructed from the invariant problems
and the notion of centrality carried over to it; the non-negative central fixed-points
are shown to map one-to-one to the central solutions to the invariant problems, thus
representing the invariant problems as a fixed-point problem and, by transitivity, the
original problems as a fixed-point problem.
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1 Introduction

The problem this paper addresses is to maximize cT x subject to Ax ≥ b, where A is an
m × n matrix, b is an m-dimensional vector, c is an n-dimensional vector, and x is an
n-dimensional vector; The problem is written as

max{cT x : Ax ≥ b}, (1)

and is called the original primal linear program (LP), or simply the original primal. The aim
of the paper is to represent Problem 1 as a fixed-point problem to make it more amenable
to solution.

The LP and its asymmetric dual are represented as a fixed-point problem of the form
Pω = ω ≥ 0, where P is an idempotent symmetric matrix. Preliminary notions of function
pairs, regular pairs, central elements and invariance are introduced. Next the original
linear program and its asymmetric dual problem are introduced and their invariant forms
are constructed. Then primal and dual function pairs are introduced which map between
and establish the equivalence of the original and invariant problems as well as allowing
central forms of all the problems to be defined. Finally the notion of centrality is carried
over to the fixed-point problem which is then shown to be equivalent to solving the central
forms of the invariant problems, thus completing the representation.

The representation is related to that of Pyle [1], [2], Cline [3], Nguyen [4], Bruni et al. [5]
where successive increases in simplicity and precision have occurred, particularly with the
later two authors; the aim of this paper is to continue this trend.
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2 Preliminaries

2.1 The Moore-Penrose pseudo-inverse

The development requires the Moore-Penrose pseudo-inverse: if X is a matrix then there
exists a unique pseudo-inverse X+ satisfying the four non-constructive conditions:

XX+X = X, (i)
X+XX+ = X+, (ii)
(XX+)T = XX+ and (iii)
(X+X)T = X+X . (iv)

(2)

Refer to Albert [6] for a detailed exposition.

2.2 Function pairs

Two functions are said to be a function pair if the domain of each is the codomain of the
other.

2.2.1 Regular pairs

Motivated by semigroup nomenclature [7], a function pair, say {t, u}, is called a regular
function pair if tut = t and utu = u.

2.2.2 Central elements

Given a function pair {t, u}, with t : V → W and u : W → V, the sets Vc = Wu and
Wc = V t are called central ; elements in central sets are called central, that is

Definition 1 An element is central in the domain of one function of a function pair if the
element is in the range of the other function of the pair.

Functions of the form tc = t|Vc with codomain V t, and uc = u|Wc with codomain Wu are
called central functions, and function pairs of the form {tc, uc} are called central function
pairs.

Lemma 1 Given a regular function pair with t : V → W and u : W → V,

(a) tc is bijective,
(b) uc is bijective,
(c) Vc = Wcu; Wu = V tu
(d) Wc = Vct, V t = Wut and
(e) tc and uc are mutual inverses.

Proof

(a) tc is 1:1 : (v1, v2 ∈ Wu) ∧ (v1t = v2t) ⇒ (v1 = w1u) ∧ (v2 = w2u) ∧ (v1t = v2t)
⇒ (v1 = w1u)∧(v2 = w2u)∧(w1ut = w2ut) ⇒ (v1 = w1u)∧(v2 = w2u)∧(w1utu =
w2utu) ⇒ (v1 = w1u) ∧ (v2 = w2u) ∧ (w1u = w2u) ⇒ v1 = v2 , further tc is onto
Wc : image(tc) = Vctc = Vct ⊆ V t = Wc = V t = V tut ⊆ Wut = Vct = Vctc =
image(tc), that is image(tc) = Wc, so tc is bijective.
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(b) The proof is similar to (a).
(c) Vc = Wu = Wutu ⊆ V tu = Wcu ⊆ Wu = Vc, so Vc = Wcu; Wu = Wutu ⊆ V tu ⊆

Wu, so Wu = V tu.
(d) the proof is similar to (c).
(e) For v ∈ Vc, v = wu ∃w ∈ W ⇒ vtcuc = wutcuc = wutuc = wutu = wu = v, so tcuc is

the identity map on Vc, similarly it is found that uctc is the identity map on Wc, so
tc and uc are mutual inverses. 2

Lemma 2 Given the regular function pair {f, f} with f : X → X and f : X → X,

(a) x is central iff x = xff.
(b) x is central iff x = xff.

Proof

(a) x is central ⇔ x = xf ∃x ∈ X ⇒ (xff = xfff) ∧ (x = xf) ∃x ∈ X ⇒ (xff = xf) ∧ (x =
xf) ∃x ∈ X ⇒ x = xff ⇒ x = xf where x = xf ⇔ x is central, that is x is central iff
x = xff .

(b) The proof is exactly similar to that of (a). 2

2.3 The invariant framework

Quantities which are invariant under affine transformation of the solution space of Problem 1
are introduced here. These quantities are used to construct the invariant problems of
Section 4.

Define

A = AA+, (a)

b = (I − AA+)b, (b)

c = AT+c, (c)

D = I − AA+. (d)

(3)

Note that A and D are symmetric idempotents in view of the latter two non-constructive
conditions for the pseudo-inverse. It is a straightforward matter, using the definitions above
and the nonconstructive characterization of the Moore-Penrose pseudo-inverse, to show that

AT = A (a) Ab = 0 (f)
A2 = A (b) Db = b (g)
DT = D (c) Ac = c (h)
D2 = D (d) Dc = 0 ( i )

AD = DA = 0 (e) bT c = 0 ( j )

(4)

The results listed in (4) and a few obvious consequences are used throughout without
necessarily referencing them.

As an intermediate step in representing the LP problem as a fixed-point problem, an
invariant primal and an invariant dual are constructed, the term invariant being used as
these problems can be shown to be invariant under affine transformation of the solution
space of Problem 1. For details refer to [8] and [9].
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2.4 Quasi-boundedness

If Problem 1 is feasible there exists a solution, say xf such that Axf ≥ b. Now Axf ≥
b ⇒ A(xf + λ(I − A+A)c) ≥ b, so xf + λ(I − A+A)c is also feasible and its objective
value is cT (xf + λ(I − A+A)c) = cT xf + cT λ(I − A+A)c = cT xf + λcT (I − A+A)c =

cT xf + λ ‖(I − A+A)c‖
2
, which is unbounded unless ‖(I − A+A)c‖ = 0, that is unless

A+Ac = c, so the following definition is introduced:

Definition 2 Problem 1 is said to be quasi-bounded if A+Ac = c .

Lemma 3 Problem 1 is feasible bounded ⇒ Problem 1 is quasi-bounded.

Note that usually A is of full rank and m ≥ n, so A+A = I, which implies A+Ac = c , and
so such problem is quasi-bounded.

Lemma 4 Problem 1 is quasi-bounded ⇔ A+Ac = c ⇔ AT c = c .

Proof Problem 1 is quasi-bounded ⇒ AT c
(3 c)
= AT (AT+c) = (AT AT+)c

= (AT A+T )c = (A+A)T c = A+Ac
(Definition 2)

= c ⇒ AT c = c ⇒ (AT c = c)∧(A+AAT c =

A+Ac) ⇒ (AT c = c) ∧ (AT c = A+Ac) ⇒ A+Ac = c
(Definition 2)

⇒ Problem 1 is quasi-

bounded, so Problem 1 is quasi-bounded ⇔ AT c = c. 2

3 The original problems

3.1 The primal

The form of the LP used is the original primal given by (1), that is max{cT x : Ax ≥ b}.
A feasible vector is one which satisfies the constraint conditions for the linear program,

for example for Problem 1, x is feasible if Ax ≥ b. By feasible bounded is meant the situation
where the set of objective values of all feasible solutions is bounded above if the problem is
one of maximization, and below if the problem is one of minimization; an “optimal” vector
means a feasible vector whose objective value is equal to the maximum for the set of feasible
solutions. A feasible linear program is one which has a feasible vector; a feasible bounded
linear program is one with a solution.

3.2 The asymmetric dual

An asymmetric dual is given by Schrijver [10, p. 95]:

max{cT x : Ax ≤ b} = min{bT y : AT y = c, y ≥ 0}, if either exists, (5)

From this form

max{(−c)T (−x) : A(−x) ≤ −b} = min{(−b)T (−y) : AT (−y) = (−c),−y ≥ 0}
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which implies
max{cT x : Ax ≥ b} = min{bT y : AT y = c, y ≤ 0} , (6)

We call
min{bT

y : AT y = c, y ≤ 0} (7)

the original dual.

4 The invariant problems

In this section the invariant problems are introduced and it is shown how they relate to
each other; in the following section these problems are related to the original primal and
dual.

Substituting A for A, b for b and c for c in (6),

max{cT x : Ax ≥ b} = min{bT
y : Ay = c, y ≤ 0}, if either exists. (8)

Now min{bT y : Ay = c, y ≤ 0}

= min{bT y : (I − D)y = c, y ≤ 0}

= min{bT y : y − Dy = c, y ≤ 0}

= min{bT y : D(−y) − c = −y,−y ≥ 0}

= min{bT (−y) : Dy− c = y, y ≥ 0})

= min{−bT y : Dy − c = y, y ≥ 0})

= −max{bT y : Dy − c = y ≥ 0},

that is
min{bT y : Ay = c, y ≤ 0} = −max{bT y : Dy− c = y ≥ 0} (9)

and from (8) and (9)

max{cT x : Ax ≥ b} = −max{bT y : Dy − c = y ≥ 0} (10)

Lemma 5

(a) max{cT x : Ax − b = x ≥ 0} = max{cT x : Ax ≥ b}
(b) max{bT y : Dy− c = y ≥ 0} = max{bT y : Dy ≥ c}

Proof

(a) max{cT x : Ax−b = x ≥ 0} ≤ max{cT x : Ax−b ≥ 0} = max{cT x : A(Ax−b)−b = Ax−
b ≥ 0} = max{cT (Ax−b) : A(Ax−b)−b = Ax−b ≥ 0} ≤ max{cT x : Ax−b = x ≥ 0}.

(b) The proof is analogous to proof of (a). 2

Using (10) and Lemma 5 (a) the central invariant problems are related as follows:

max{cT x : Ax − b = x ≥ 0} + max{bT y : Dy− c = y ≥ 0} = 0 , (11)

and from (10) and Lemma 5 (b) the peripheral invariant problems are related thus:

max{cT x : Ax ≥ b} + max{bT y : Dy ≥ c} = 0 . (12)
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The four problems in Lemma 5 comprise the invariant problems; the form in (10), on
the LHS, without an equals, is called “peripheral” and the form, on the RHS, with an
equals is called “central”; the problems are classified in Table 1. Later, regular function
pairs which map between the original and invariant forms are introduced which justify
the “central” appellation and permit the definition of peripheral and central forms of the
original problems. Note (a) referring forward, Theorem 1 is the motivation for calling the
invariant problems of Table 1 “central”. (b) in view of Lemma 5 the central invariant
problems are very similar to the peripheral invariant problems, however precise analysis of
the LP problem requires focus on the central invariant problems.

Table 1: Invariant problem classification

primal dual

peripheral max{cT x : Ax ≥ b} max{bT y : Dy ≥ c}
central max{cT x : Ax − b = x ≥ 0} max{bT y : Dy− c = y ≥ 0}

5 Original and invariant problem relationship

5.1 The primal and dual function pairs

With solution sets labeled as:
X for the original primal (a copy of <n)
Y for the original dual (a copy of <m)
X for the invariant primal (a copy of <m), and
Y for the invariant dual (a copy of <m),

the original and invariant problems are related using two function pairs as follows:

the primal function pair {fp, fp} where

fp : X → X, x 7→ Ax− b and (13)

fp : X → X, x 7→ A+(x + b) (14)

and the dual function pair {fd, fd} where

fd : Y → Y, y 7→ −Dy − c and (15)

fd : Y → Y, y 7→ c − Dy (16)

For the primal mappings the compositions xfpfp
(13)
= (Ax − b)fp

(14)
= A+((Ax − b) + b) = A+Ax, and xfpfp = (A+(x + b))fp = A(A+(x + b)) − b =

AA+(x + b) − b = Ax + Ab − b = Ax − b are computed, that is

xfpfp = A+Ax (17)

xfpfp = Ax − b (18)
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and for the dual mappings the compositions yfdfd = (−Dy − c)fd = c − D(−Dy − c) =
c − (−Dy) = c + Dy, and yfdfd = (c − Dy)fd = −D(c − Dy)− c = Dy− c are computed,
that is

yfdfd = Dy + c (19)

yfdfd = Dy− c (20)

The central sets and optimal central subsets w.r.t. these function pairs for the original and
invariant problems are indicated in Figure 1 by the black and green boxes respectively.

For the primal mappings the triple compositions

xfpfpfp
(17)
= (A+Ax)fp

(13)
= A(A+Ax) − b = Ax − b

(13)
= xfp,

and

xfpfpfp
(18)
= (Ax − b)fp

(14)
= A+((Ax − b) + b) = A+(Ax + b) = A+(x + b)

(14)
= xfp

are computed, that is

fpfpfp = fp (21)

fpfpfp = fp (22)

and for the dual mappings the triple compositions

yfdfdfd

(19)
= (Dy + c)fd

(15)
= − D(Dy + c) − c = −Dy − c

(15)
= yfd, and

yfdfdfd
(20)
= (Dy− c)fd

(16)
= c − D(Dy− c) = c − Dy

(16)
= yfd are computed, that is

fdfdfd = fd (23)

fdfdfd = fd (24)

From (21), (22), (23) and (24), the function pairs {fp, fp} and {fd, fd} are regular so Lemma 1
applies, giving in the context of these functions:

Theorem 1

(a) The four central mappings fpc, fpc, fdc and fdc are bijective.
(b) The primal and dual central function pairs {fpc, fpc} and {fdc, fdc}

comprise mutually inverse functions.
(c) Conditions x = A+Ax, y = Dy + c, x = Ax − b, and y = Dy− c

define precisely the central elements of X, Y, X, and Y respectively.

Proof (a) and (b) follow since the function pairs {fp, fp} and {fd, fd} satisfy the conditions
for Lemma 1. (c) Follows from Lemma 2, and from (17), (18), (19) and (20) respectively.2

Theorem 2

(a) x = A+Ax,
(b) y = Dy + c,
(c) x = Ax − b, and
(d) y = Dy− c define precisely the central elements of X, Y, X, and Y respectively.
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Proof The theorem follows from Lemma 2, and from (17), (18), (19) and (20) respectively.
2

Four linear programs are now considered: the original primal (1), original dual (7),
invariant primal (mentioned in Lemma 5a) and invariant dual (mentioned in Lemma 5b);
the original and invariant programs are related using the primal and dual function pairs
defined in Section 5.1.

5.2 Feasibility

The quantities Ax − b, y, Ax − b and Dy − c are related by the defined function pairs as
follows:

Lemma 6

(a) A(xfp) − b = Ax − b

(b) A(xfp) − b = Ax − b

(c) D(yfd) − c = −y if AT y = c

(d) AT (yfd) = c ∧ yfd = −(Dy− c) if Problem 1 is quasi-bounded

Proof

(a) A(xfp) − b
(18)
= (xfp)fpfp = x(fpfpfp)

(21)
= xfp

(13)
= Ax − b,

(b) A(xfp) − b
(13)
= (xfp)fp

(18)
= Ax − b,

(c) D(yfd)−c
(20)
= yfd(fdfd) = y(fdfdfd)

(23)
= yfd

(15)
= −Dy−c = −(I −A)y−c =

−y + AA+y − c = −y + A+T AT y − c = −y + A+T c − c = −y + c − c = −y,

(d) yfd = c − Dy = −(Dy − c) , so AT (yfd) = AT (c − Dy) = AT (c − (I − AA+)y) =

AT c
(Lemma4c)

= c, . 2

From Lemma 6 it is seen that feasible solutions are mapped to feasible solutions:

Corollary 1

(a) Ax ≥ b ⇔ A(xfp) ≥ b,
(b) Ax ≥ b ⇔ A(xfp) ≥ b,
(c) y ≤ 0 ⇔ D(yfd) ≥ c, if AT y = c,
(d) Dy ≥ c ⇔ AT (yfd) = c ∧ yfd ≤ 0, if Problem 1 is quasi-bounded.

Corollary 1 shows that the two functions of the primal function pair map between feasible
original primal solutions and feasible invariant primal solutions, while the two functions of
the dual function pair map between feasible original dual solutions and feasible invariant
dual solutions.

5.3 Optimality

It is shown that the objective values of corresponding primal vectors differ by a fixed amount,
and that the objective values of corresponding dual vectors move in lockstep - that is they
differ in sign and by a fixed amount, and thus solutions are mapped to solutions:
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Lemma 7

(a) cT (xfp) = cT x− bT c

(b) cT (xfp) = cT x + b
T
c

(c) bT (yfd) = b
T
c − b

T
y if AT y = c

(d) bT (yfd) = bT c − bT y

Proof

(a) cT (xfp) = cT (Ax − b) = cT Ax − cT b = (AT+c)T Ax − cT b = cT A+Ax − cT b =

(A+Ac)T x − cT b
(Definition 2)

= cT x − cT b = cT x − b
T
c;

(b) cT (xfp) = cT A+(x + b) = (A+T c)T (x + b) = (AT+c)T (x + b)
(3 c)
= cT (x + b) = cT x +

cT b = cT x + bT c;
(c) bT (yfd) = bT (−Dy−c) = −bT Dy = bT (AA+−I)y = bT (AA+)y−bT y = bT A+T AT y−

bT y = bT A+T c − bT y = bT c − bT y;
(d) b

T (yfd) = b
T (c − Dy) = b

T
c − b

T Dy = b
T
c − bT y. 2

Corollary 2

(a) cT (xfp) + bT (yfd) = cT x − bT y if AT y = c

(b) cT (xfp) − b
T (yfd) = cT x + bT y .

Proof

(a) Adding the results in Lemma 7a and 7 c, cT (xfp)+ bT (yfd) = cT x− b
T y is obtained.

(b) Subtracting Lemma 7 d from 7b yields cT (xfp) − b
T (yfd) = cT x + bT y . 2

From Corollaries 1 and 2 it is seen that solutions to the original primal are mapped
to solutions to the invariant primal and vice versa, and solutions to the original dual are
mapped to solutions to the invariant dual and vice versa, making the representation of the
primal problems as invariant problems explicit:

Theorem 3

Provided the original primal is quasi-bounded,
(a) if xs and ys are 〈 feasible|solutions 〉 for the original primal and dual respectively then

xsfp and ysfd are central 〈 feasible|solutions 〉 for the invariant primal and dual re-
spectively.

(b) if xs and ys are 〈 feasible|solutions 〉 for the invariant primal and dual respectively
then xsfp and ysfd are central 〈 feasible|solutions 〉 for the original primal and dual
respectively,

(c) The four mappings, restricted to central [feasible|solution] vectors are bijections.

Proof

(a) If xs and ys are feasible then, from Corollary 1 (a) and (c), xsfp and ysfd are feasible,
while centrality follows from Definition 1; further, given solutions xs and ys,

cT xs − bT ys = 0
(Corollary 2a)

⇒ cT (xsfp) + bT (ysfd) = 0
(12)
⇒ xsfp
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and ysfd are optimal, and central since they are in the ranges of fp and fd respectively,
and are therefor respective solutions for the invariant primal and dual.

(b) If xs and ys are feasible then, from Corollary 1 (b) and (d), xsfp and ysfd are feasible
while centrality follows from Definition 1; further, if xs and ys are solutions then

cT xs + bT ys = 0
(Corollary 2b)

⇒ cT (xsfp) − b
T (ysfd) = 0

(6)
⇒ xsfp

and ysfd are respective solutions for the original primal and dual.

(c) For central vectors the result follows from Lemma 1; for central feasible vectors the
result follows from Corollary 1 (b) and (d); for central solutions the result follows from
Corollary 1 (b) and (d), and Corollary 2. 2

Remark 1 From Lemmas 1 and 3, the central function pairs establish a one-to-one corre-
spondence between the central solutions to the original problems and the central solutions
to the invariant problems, and a one-to-one correspondence between the central solutions
to the original problems and the central solutions to the invariant problems.

The representation of the original problems as invariant problems is summarized by
the lower two-thirds of Figure 1. Feasible conditions and solutions are in thin-lined boxes,
central feasible conditions and solutions are in thick-lined boxes, and optimal central feasible
conditions and solutions are in green boxes; the two function pairs and their central forms
are shown linking the original and invariant solutions; the two functions Fp = fpfp and
Fd = fdfd which map arbitrary invariant solutions to central invariant solutions are shown.

5.4 Summary

Invariant problems have been constructed and mappings have been defined which establish a
1:1 relationship between the solutions to the central original and central invariant problems.

6 Invariant and fixed-point problem relationship

A fixed-point problem is constructed which involves finding a non-negative vector

ω =

[

ξ

ζ

]

which is transformed to itself by an idempotent symmetric matrix P. The notion of central-
ity is introduced to elements in the domain of N via the backmap of the natural mapping

N : ω =

[

ξ

ζ

]

∈ <2m 7→ (ξ, ζ), ξ ∈ <m, ζ ∈ <m

(where ξ and ζ are interpreted as being vectors in the solution spaces of the invariant primal
and dual respectively). It is then shown that N with domain restricted to central solutions
is a surjection onto the set of central invariant solutions, thus completing the representation
of the LP problem as a fixed-point problem.
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6.1 The fixed-point matrix

The following notation is introduced:

ΠZ =

[

A 0
0 D

]

(a)

β =

[

b

c

]

(b)

γ =

[

c

b

]

(c)

Πβ = ββ
+ (d)

Πγ = γγ+ (e)

(25)

then
Π2

Z = ΠT
Z = ΠZ (a) ΠβΠγ = ΠγΠβ = 0 (g)

ΠZΠβ = 0 (b) Πββ = β (h)
ΠZΠγ = Πγ (c) Πβγ = 0 (i)
ΠZβ = 0 (d) Π2

γ = ΠT
γ = Πγ (j)

ΠZγ = γ (e) Πγβ = 0 (k)
Π2

β = ΠT
β = Πβ (f) Πγγ = γ (l)

(26)

Definition 3 The fixed-point matrix is defined as P = ΠZ + Πβ − Πγ , that is

P =

[

A 0
0 D

]

+

[

b

c

] [

b

c

]+

−

[

c

b

] [

c

b

]+

.

Symmetry of P follows from the symmetry of its components ΠZ, Πβ and Πγ , while P2
(3)
=

(ΠZ+Πβ−Πγ)2 = Π2
Z+ΠZΠβ−ΠZΠγ+ΠβΠZ+Π2

β−ΠβΠγ−ΠγΠZ−ΠγΠβ +Π2
γ

(26)
= ΠZ+

0 − Πγ + 0 + Πβ − 0 − Πγ − 0 + Πγ = ΠZ + Πβ − Πγ

(3)
= P , that is

PT = P and P2 = P, (27)

in other words P is a projection matrix.

Further, Pβ
(3)
= (ΠZ + Πβ − Πγ)β = ΠZβ + Πββ − Πγβ

(26)
= 0 + β − 0 = β, and

Pγ
(3)
= (ΠZ + Πβ − Πγ)γ = ΠZγ + Πβγ − Πγγ

(26)
= γ + 0 − γ = 0 , that is

Pβ = β , (a)
Pγ = 0. (b)

(28)

and, obviously,

βT P = βT , (a)
γT P = 0T . (b)

(29)
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Definition 4 A point ω is said to be a fixed-point, if Pω = ω.

Remark 2 It follows that for fixed-point ω,

γT ω = 0, Πγω = 0, and Pω = (ΠZ + Πβ)ω .

6.2 The surjection

6.2.1 Point classification

Attributes are ascribed to pairs as follows: (ξ, ζ) inherits a particular characteristic iff ξ

and ζ both have this characteristic. Attributes are ascribed to points as follows:

[

ξ

ζ

]

inherits a particular characteristic iff (ξ, ζ) has this characteristic so, for example, given

Definition 5 (ξ, ζ) is quasi-optimal iff cT ξ + bT ζ = 0 .

If (ξq , ζq) is quasi-optimal then, by ascription,

[

ξq

ζq

]

is quasi-optimal

Thus feasibility, centrality and solution characteristics can be ascribed to pairs and
points in a natural manner.

Lemma 8 ω =

[

ξ

ζ

]

is a fixed-point ⇒ (a) γT ω = 0; (b) Πγγ = 0.

Proof

(a) ω = Pω ⇒ γT ω = γT Pω
(29b)
⇒ γT ω = 0T ω = 0.

(b) γT ω = 0 ⇒ γ+ω = 0 ⇒ γγ+ω = 0 ⇒ Πγγ = 0. 2

6.2.2 The discriminant and centrality

Definition 6 d(ω) = −β
+

ω is called the discriminant of ω .

Lemma 9 ω is a central-point ⇒ d(ω) = β
+

β ∈ {0, 1} .

Proof ω = ΠZω − β ⇒ β+ω = β+ΠZω − β+β ⇒ −β+ω = β+β ⇒ d(ω) = β+β . 2

Note that the functions C1 and P are idempotents which commute.

The following lemma shows that the discriminant determines precisely whether or not
a fixed-point is central, and guarantees that applying C2 to a fixed-point yields a central
fixed-point:

Lemma 10 ω is a central fixed-point iff ω is a fixed-point and d(ω) ∈ {0, 1}.



68 Jalaluddin Abdullah

Proof The forward implication follows from Lemma 9; conversely,

Pω = ω ∧ d(ω) ∈ {0, 1}

⇒ (ΠZ + ββ
+ − γγ+)ω = ω ∧ d(ω) = β

+
β

⇒ Pω = ω ∧ (ΠZ + ββ+)ω = ω ∧ d(ω) = β+β

⇒ Pω = ω ∧ ΠZω − β(−β
+
ω) = ω ∧ d(ω) = β

+
β

⇒ Pω = ω ∧ ΠZω − β(β+β) = ω

⇒ Pω = ω ∧ ΠZω − β = ω

⇒ ω is a central fixed-point. 2

Consistent with Theorem 2 (c) and (d) in case (a), and with Lemma 10 in case (b), we
define centralising functions:

Definition 7

(a) C1 :

[

ξ

ζ

]

7→

[

Aξ

Dζ

]

−

[

b

c

]

or,

alternatively, C : ω 7→ ΠZω − β , and

(b) C2 : ω 7→ ω/d(ω) .

Lemma 11 ω is a central fixed-point iff ω is a quasi-optimal central point.

Proof If ω is a central fixed-pointthen by Lemma 8, ω is quasi-optimal central. Conversely

if ω is quasi-optimal central, Pω = (ΠZ + Πβ − Πγ)ω
(Lemma 8)

= (ΠZ + Πβ)ω = (ΠZ +

ββ+)ω = ΠZω + β(β+ω)
(Lemma 9)

= ΠZω + β(−β+β)=ΠZω−β
(Definition 7)

= C1ω=ω,

that is Pω = ω, so ω is a central fixed-point. 2

So, ωa is an arbitrary non-negative central fixed-point
Lemma10

⇒ ωc = ωa/d(ωa) is a

non-negative central fixed-point
Lemma 11

⇔ ωc is a non-negative quasi-optimal central point
(11)
⇔ ωc is a central solution point ⇔ Nωc is an invariant central solution pair. Thus we

have the following theorem.

Theorem 4 The map N :

[

ξ

ζ

]

7→ (ξ, ζ) where ξ, ζ ∈ <m, with domain equal to the set of

non-negative central fixed-points, and codomain equal to the set of invariant central solution
pairs is a surjection.

6.2.3 The unusual case

There remains the unusual case of a zero central fixed-point. From Lemma 9, for central
fixed-point ωcf ,−β

+
ωcf = β

+
β ∈ {0, 1} and usually −β

+
ωcf = 1, however consider the

unusual case where −β+ωc = 0, that is [ωcf = ΠZωcf −β]∧ [ωcf = Pωcf ]∧ [−β+ωcf = 0]
(Lemma8)

⇒ [ωcf = ΠZωcf − β] ∧ [ωcf = Pωcf ] ∧ [−β
+

ωcf = 0] ∧ [γ+ωcf = 0]

⇒ [ωcf = ΠZωcf − β] ∧ [ωcf = (ΠZ + ββ
+)ωcf ] ∧ [−β

+
ωcf = 0]

⇒ [ωcf = ΠZωcf − β] ∧ [ωcf = ΠZωcf ] ⇒ β = 0 . If β = 0 then b = 0 and c = 0, and
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the invariant problems are max{0T x : Ax ≥ 0} and max{0T y : Dy ≥ 0}, that is, find
the solutions for the invariant problems {x : Ax ≥ 0} and {y : Dy ≥ 0} and the solutions
to the original problems {A+(x + b) : Ax ≥ 0} and {c − Dy : Dy ≥ 0}. So, under these

circumstances, every non-negative central solution fixed-point solution zs =

[

xs

ys

]

yields

solutions A+(xs + b) and c − Dys to the original primal and dual respectively.

7 Conclusion

Summing up, the one-to-one relationship between the original and invariant problems is
shown in the lower two-thirds of Figure 1, while the one-to-one relationship between the
invariant and fixed-point problems is shown in the upper two-thirds of the figure. Thus the
central original problems have been represented as the central invariant problems, and the
central invariant problems have been represented as the central fixed-point problem; since
the central problems encapsulate all solutions, this completes the representation of the LP
problem aa a fixed-point problem.
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