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Abstract In this article, cyclic codes of length n over a formal power series ring and cyclic

codes of length nl over a finite field are studied. We have defined a bijective mapping Φl

on R∞, where R∞ is the formal power series ring over a finite field F. We have proved that

a cyclic shift in (F)ln corresponds to a Φl−cyclic shift in (R∞)n by defining a mapping
from (R∞)n onto (F)ln. We have also derived some related results.
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1 Introduction

Error-correcting codes are basically used to detect errors when messages are transmitted through
a noisy communication channel. Most of the codes are also used to correct errors. In coding
theory, we encode the data by adding a certain amount of redundancy to the original message.
As a consequence the original message can be recovered if not too many errors have occurred.

Cyclic codes play an important role in coding theory as seen in [1,6]. In the very beginning,
the properties of Cyclic codes were studied over the binary field F2, then the study was extended
to Fq with q = pr for some prime p and r ≥ 1. The structure of cyclic codes was obtained by
viewing a cyclic code C of length n over a finite field Fq as an ideal of the ring Fq [x]/< xn − 1 >
[4]. Dougherty, Liu, and Park [5] defined a series of finite chain rings and introduced the
concept of γ−adic codes over a formal power series rings. Dougherty and Liu [4] have given
the concept of λ−cyclic code of length n over R∞. By defining a module isomorphism between
Rn and (Z4)

2kn, Dinh and Lopez-Permouth proved that a cyclic shift in (Z4)
2kn corresponds

to a constacyclic shift in Rn by u, where R = Z4[u]/< u2k

− 1 > [2]. In this article, we have
introduced the concept of Φλl−cyclic code of length n over a formal power series ring and
derived some related results.
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2 Some Important Definitions and Results

Throughout this article we assume that all rings are commutative with identity 1 6= 0.

Definition 1 [4] Let R be a ring and Rn be the R−module. A R−submodule C of Rn is called
a linear code of length n over R.

Note that in this study all codes are linear.

Definition 2 [4] Let x, y be vectors in Rn. The inner product of x and y is defined by

[x, y] = x1y1 + x2y2 + ... + xnyn.

Definition 3 [4] For a code C of length n over R, the dual code of C is defined by

C⊥ = {x ε Rn | [x, c] = 0, ∀ c ε C}.

Remark 1 C⊥ is linear whether or not C is linear.

Definition 4 [4] A finite ring is called a chain ring if all its ideals are linearly ordered by
inclusion.

Definition 5 [4] Let i be an arbitrary positive integer and F be a finite field. The ring Ri is
defined as

Ri = {a0 + a1γ + ... + ai−1γ
i−1 | ai ε F},

where γi−1 6= 0, but γi = 0 in Ri. The operations over Ri are defined as follows:

i−1
∑

l=0

alγ
l +

i−1
∑

l=0

blγ
l =

i−1
∑

l=0

(

al + bl

)

γl;
(

i−1
∑

l=0

alγ
l
)

.
(

i−1
∑

l=0

blγ
l
)

=
i−1
∑

s=0

(

∑

l+l′=s

albl′

)

γs.

Definition 6 [4] The ring R∞ is called a formal power series ring which is defined as

R∞ = F[[γ]] =
{

∞
∑

l=0

alγ
l | al ε F

}

.

Addition and multiplication over R∞ are defined by extending the addition and multiplication
of polynomials, namely, term-by-term addition

∞
∑

l=0

alγ
l +

∞
∑

l=0

blγ
l =

∞
∑

l=0

(al + bl)γ
l,

and the Cauchy product

(

∞
∑

l=0

alγ
l
)

.
(

∞
∑

l=0

blγ
l
)

=
∞

∑

s=0

(

∑

l+l′=s

albl′

)

γs.
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Definition 7 [4] Let i, j be two integers with i ≤ j. In [4], the mapping Ψj
i is defined by

Ψj
i : Rj −→ Ri,

j−1
∑

l=0

alγ
l 7−→

i−1
∑

l=0

alγ
l.

Definition 8 [4] Let i be any positive integer. In [4], the mapping Ψi is defined by

Ψi : R∞ −→ Ri,

∞
∑

l=0

alγ
l 7−→

i−1
∑

l=0

alγ
l.

It can be proved that Ψj
i and Ψi are homomorphisms. We can extend Ψj

i naturally from Rn
j to

Rn
i . Similarly Ψi can be extended naturally from Rn

∞
to Rn

i .

Definition 9 Let l be any positive integer. We define a mapping Φl on R∞ as follows:

Φl : R∞ −→ R∞,

∞
∑

i=0

aiγ
i 7−→ al−1 + γ

l−2
∑

i=0

aiγ
i +

∞
∑

i=l

aiγ
i.

We have the following lemma.

Lemma 1 Assume the notations given above. Then, we have
(a) Φl is bijective.
(b) The inverse of Φl is Φl−1

l .
(c) It preserves addition.
(d) It does not preserve multiplication.

Proof

(a) For
∑

∞

i=0 aiγ
i ε R∞ = Co-domain. There exists

∑l−1
i=1 aiγ

i−1 + a0γ
l−1 +

∑

∞

i=l
aiγ

i ε R∞ =

Domain, such that Φl(
∑l−1

i=1 aiγ
i−1 + a0γ

l−1 +
∑

∞

i=l
aiγ

i) =
∑

∞

i=0 aiγ
i. Thus the mapping is

onto.
Let

Φl

(

∞
∑

i=0

aiγ
i
)

= Φl

(

∞
∑

i=0

biγ
i
)

⇒ al−1 + γ
l−2
∑

i=0

aiγ
i +

∞
∑

i=l

aiγ
i = bl−1 + γ

l−2
∑

i=0

biγ
i +

∞
∑

i=l

biγ
i

⇒ al−1 = bl−1, a0 = b0, a1 = b1, ....

Thus
∞

∑

i=0

aiγ
i =

∞
∑

i=0

biγ
i.

Therefore the mapping is one-one. Hence the mapping is bijective.
(b) We know that

Φl

(

∞
∑

i=0

aiγ
i
)

= al−1 + γ
l−2
∑

i=0

aiγ
i +

∞
∑

i=l

aiγ
i
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Thus

Φ2
l

(

∞
∑

i=0

aiγ
i
)

= Φl

(

Φl

(

∞
∑

i=0

aiγ
i
))

= al−2 + γal−1 + γ2

l−3
∑

i=0

aiγ
i +

∞
∑

i=l

aiγ
i.

Continuing the process l times we get

Φl
l

(

∞
∑

i=0

aiγ
i
)

= Φl

(

Φl−1
l (

∞
∑

i=0

aiγ
i
))

=

∞
∑

i=0

aiγ
i.

Thus Φl−1
l is the inverse of Φl.

(c) Let
∞

∑

i=0

aiγ
i,

∞
∑

i=0

biγ
i ε R∞.

Now

Φl

(

∞
∑

i=0

aiγ
i +

∞
∑

i=0

biγ
i
)

= Φl

(

∞
∑

i=0

(ai + bi)γ
i
)

= al−1 + bl−1 + γ
l−2
∑

i=0

(ai + bi)γ
i +

∞
∑

i=l

(ai + bi)γ
i.

Again

Φl

(

∞
∑

i=0

aiγ
i
)

= al−1 + γ
l−2
∑

i=0

aiγ
i +

∞
∑

i=l

aiγ
i

and

Φl

(

∞
∑

i=0

biγ
i
)

= bl−1 + γ
l−2
∑

i=0

biγ
i +

∞
∑

i=l

biγ
i.

Therefore

Φl

(

∞
∑

i=0

aiγ
i
)

+ Φl

(

∞
∑

i=0

biγ
i
)

= al−1 + bl−1 + γ
l−2
∑

i=0

(ai + bi)γ
i +

∞
∑

i=l

(ai + bi)γ
i.

Thus

Φl

(

∞
∑

i=0

aiγ
i +

∞
∑

i=0

biγ
i
)

= Φl

(

∞
∑

i=0

aiγ
i
)

+ Φl

(

∞
∑

i=0

biγ
i
)

.

Hence the mapping preserves addition.
(d) Let F = F2. Now 1 + γ + γ2 ε R∞. Then Φ2(1 + γ + γ2) = 1 + γ + γ2. Thus

Φ2(1 + γ + γ2).Φ2(1 + γ + γ2) = 1 + γ2 + γ4

and
Φ2((1 + γ + γ2).(1 + γ + γ2)) = Φ2(1 + γ2 + γ4) = γ + γ2 + γ4.

Hence we have shown that

Φl

((

∞
∑

i=0

aiγ
i
)

.
(

∞
∑

i=0

biγ
i
))

6= Φl

(

∞
∑

i=0

aiγ
i
)

.Φl

(

∞
∑

i=0

biγ
i
)
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which implies that the mapping does not preserve multiplication. Hence it is not an isomor-
phism. 2

Similarly, we can define Φ−l on R∞ as follows:

Φ−l : R∞ −→ R∞,

∞
∑

i=0

aiγ
i 7−→ −al−1 + γ

l−2
∑

i=0

aiγ
i +

∞
∑

i=l

aiγ
i.

For any scalar λ 6= 0 we can also define Φλl on R∞ as follows:

Φλl : R∞ −→ R∞,

∞
∑

i=0

aiγ
i 7−→ λal−1 + γ

l−2
∑

i=0

aiγ
i +

∞
∑

i=l

aiγ
i

Both Φ−l and Φλl are bijective, preserves addition, but does not preserve multiplication. Thus
they are not isomorphisms.

Lemma 2 Assume the notations given above. The inverse of Φ−l is Φ2l−1
−l .

Proof We know that

Φ−l

(

∞
∑

i=0

aiγ
i
)

= −al−1 + γ

l−2
∑

i=0

aiγ
i +

∞
∑

i=l

aiγ
i.

Thus

Φ2
−l

(

∞
∑

i=0

aiγ
i
)

= Φ−l

(

Φ−l

(

∞
∑

i=0

aiγ
i
))

= −al−2 − γal−1 + γ2
l−3
∑

i=0

aiγ
i +

∞
∑

i=l

aiγ
i.

Continuing the process 2l times we get

Φ2l
−l

(

∞
∑

i=0

aiγ
i
)

= Φ−l

(

Φ2l−1
−l

(

∞
∑

i=0

aiγ
i
))

=
∞

∑

i=0

aiγ
i.

Thus Φ2l−1
−l is the inverse of Φ−l. 2

Lemma 3 Assume the notations given above. Let s be the multiplicative order of the scalar λ
as an element of the finite field F. Then the inverse of Φλl is Φsl−1

λl .

Proof We know that

Φλl

(

∞
∑

i=0

aiγ
i
)

= λal−1 + γ
l−2
∑

i=0

aiγ
i +

∞
∑

i=l

aiγ
i.

Thus

Φ2
λl

(

∞
∑

i=0

aiγ
i
)

= Φλl

(

Φλl

(

∞
∑

i=0

aiγ
i
))

= λal−2 + λal−1γ + γ2
l−3
∑

i=0

aiγ
i +

∞
∑

i=l

aiγ
i.

Continuing the process sl times we get

Φsl
λl

(

∞
∑

i=0

aiγ
i
)

= Φλl

(

Φsl−1
λl (

∞
∑

i=0

aiγ
i
))

= λs
(

l−1
∑

i=0

aiγ
i
)

+
∞

∑

i=l

aiγ
i =

∞
∑

i=0

aiγ
i.

Thus Φsl−1
λl is the inverse of Φλl. 2



Mriganka S. Dutta and Helen K. Saikia / MATEMATIKA 34:2 (2018) 325–332 330

Definition 10 [4] Let C be a linear code of length n over R∞. The code C is called a λ− cyclic
code over R∞ if

c = (c0, c1, ..., cn−1) ε C ⇒ (λcn−1, c0, ..., cn−2) ε C.

If λ = 1, then C is called a cyclic code and if λ = −1, then C is called a negacyclic code,
otherwise, it is called a constacyclic code.

Definition 11 Let C be a linear code of length n over R∞. Here we have defined C to be a
φλl−cyclic code of length n over R∞ if

c =
(

∞
∑

j=0

a0,ju
j,

∞
∑

j=0

a1,ju
j, ...,

∞
∑

j=0

an−1,ju
j
)

ε C.

⇒
(

φλl

(

∞
∑

j=0

an−1,ju
j
)

,
∞

∑

j=0

a0,ju
j, ...,

∞
∑

j=0

an−2,ju
j
)

ε C.

If λ = 1, then C is called a Φl−cyclic code and if λ = −1, then C is called a Φ−l−cyclic code.

Let R = Z4[u]/< u2k

− 1 >. In [3], the authors have defined an isomorphism Ψ : Rn −→
(Z4)

2kn given by

Ψ
(

u
(

2k
−1

∑

j=0

an−1,ju
j
)

,
2k

−1
∑

j=0

a0,ju
j ,

2k
−1

∑

j=0

a1,ju
j, ...,

2k
−1

∑

j=0

an−2,ju
j
)

= (an−1,2k−1, a0,0, a1,0, ..., an−2,2k−1)

and proved the following theorem.

Theorem 1 [3] Cyclic codes over Z4 of length 2kn corresponds to u− constacyclic codes over
R = Z4[u]/< u2k

− 1 > of length n via the map Ψ.

Let R = Z2a [u]

<u2k
+1>

. In [7], the authors have defined a natural Z2a− module isomorphism

Ψ : Rn −→ (Z2a)2kn given by

Ψ(a0,0+a0,1u + ... + a0,2k−1u
2k−1, ..., an−1,0 + an−1,1u + ... + an−1,2k−1u

2k−1)

= (a0,0, a1,0, ..., an−1,0, a0,1, a1,1, ..., an−1,1, ..., a0,2k−1, an−1,2k−1)

and proved the following theorem.

Theorem 2 [7] Negayclic codes over Z2a of length 2kn corresponds to u− constacyclic codes
over R = Z2a [u]/< u2k

+ 1 > of length n via the map Ψ.

3 The Main Results

Our main objective is to prove the following theorem which is the central result in our present
work. The next two results entirely depends on this. Before going to prove the result we define
a mapping η : (R∞)n −→ (F)ln given by

η
(

∞
∑

j=0

a0,ju
j,

∞
∑

j=0

a1,ju
j, ...,

∞
∑

j=0

an−1,ju
j
)

= (a0,0, a1,0, ..., an−1,0, a0,1, a1,1, ..., an−1,1, ..., a0,l−1, a1,l−1, ..., an−1,l−1).
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Theorem 1 λ− cyclic codes over F of length nl corresponds to Φλl− cyclic codes over R∞ of
length n via the map η.

Proof We have already defined the mapping

η : (R∞)n −→ (F)ln

given by

η
(

∞
∑

j=0

a0,ju
j,

∞
∑

j=0

a1,ju
j, ...,

∞
∑

j=0

an−1,ju
j
)

= (a0,0, a1,0, ..., an−1,0, a0,1, a1,1, ..., an−1,1, ..., a0,l−1, a1,l−1, ..., an−1,l−1).

As we have already defined Φλl : R∞ −→ R∞ by

Φλl

(

∞
∑

i=0

aiγ
i
)

= λal−1 + γ

l−2
∑

i=0

aiγ
i +

∞
∑

i=l

aiγ
i.

Thus we have

η
(

φλl

(

∞
∑

j=0

an−1,ju
j
)

,

∞
∑

j=0

a0,ju
j, ...,

∞
∑

j=0

an−2,ju
j
)

= (λan−1,l−1, a0,0, a1,0, ..., an−2,l−1).

Thus the result is proved. 2

Corollary 1 Cyclic codes over F of length nl corresponds to Φl− cyclic codes over R∞ of length
n via the map η.

Proof Putting λ = 1 in Theorem 1, we get the above result. 2

Corollary 2 Negayclic codes over F of length nl corresponds to Φ−l− cyclic codes over R∞ of
length n via the map η.

Proof Putting λ = −1 in Theorem 1, we get the above result. 2

4 Conclusion

The map Φl is not an isomorphism. We can investigate the properties of this map and study
cyclic codes over formal power series rings and cyclic codes over finite fields simultaneously. We
can replace the finite field by any arbitrary ring and study cyclic codes over that arbitrary ring
via the map η.
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