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Abstract A natural number n is called balancing number (with balancer r) if it satisfies
the Diophantine equation 1+2+---4+(n—1) = (n+1)+(n+2)+- - -+ (n+r). However, if
for some pair of natural numbers (n,7), 1+2+---+(n—1) < (n+1)+(n+2)+-- -+ (n+r)
and equality is achieved after adding a natural number D to the left hand side then we call
n a D-subbalancing number with D-subbalancer number r. In this paper, such numbers
are studied for certain values of D.

Keywords Balancing and Lucas-balancing numbers, cobalancing numbers, Supercobal-
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Mathematics Subject Classification 11B39, 11B83

1 Introduction

Behera and Panda in [1] stated that a natural number n is called a balancing number with
balancer r if
I424+-+(n—-1D=n+)+n+2)+-+(n+r).

Furthermore, they stated that if n is a balancing number then 8n? + 1 is a perfect square. The
k™ balancing number is denoted by By, and Cj = 1/8B? + 1 is called the k" Lucas-balancing
number [2]. The balancing and Lucas-balancing numbers satisfy the recurrence relation z,, 41 =
Tp — Tp_1 with initial terms By = 0, By = 1 and Cy = 1, C; = 3 respectively. On other hand, n
is called a cobalancing number [3] with cobalancer r if

1424+ +n=n+D)+n+2)+---+(n+7r).

The n'* cobalancing number is denoted by b,, and cobalancing numbers satisfy the nonhomo-
geneous recurrence by = 0,by = 2, b,.1 = 6b,, — b,_1 + 2. The Binet forms are

B a2n _ ﬁ2n a2n + ﬁ2n

2

2n—1 _ A32n—1 1
B, = . C, = ,bn:%__.
44/2 44/2 2
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where a = 1++v2and B =1— V2.

Rout and Panda [4] generalized the concept of balancing numbers and introduced gap
balancing numbers. If k is odd, they call a natural number n a k-gap balancing number if

k+1 E+1 k+3

1+2+---+<n—T) = <n+T)+<n+T)+---+(n+7’)

for some natural number r, which is a k-gap balancer corresponding to n, while for k even, if

1+2+---+<n—§):<n+§+1)+<n+§+2)+---+(n+r)

for some natural numbers n and r then they call 2n + 1 a k-gap balancing number and r is
the corresponding k-gap balancer. In [5], Davala and Panda called n, a D-supercobalancing
number if for a fixed positive integer D, n satisfies the Diophantine equation

I1+24+--+n=mn+1)+n+2)+---+(n+7r)+D

for some natural number r, which they call as D-supercobalancer corresponding to n. Panda
and Panda [6] defined almost balancing numbers as the values of n satisfying the Diophantine
equation

1424+ m-—D+l=n+)+n+2)+ -+ (n+7) (1)

respectively for some r, which they called an almost balancer corresponding to n. They observed
that there are two classes of almost balancing numbers. The almost balancing numbers admits
a generalization. The last term 1 of the left hand side of (1) may be replaced by an arbitrary
integer D resulting the definition of subbalancing numbers.

2 Subbalancing Numbers

Definition 1 For a fized positive integer D, we call a positive integer n, a D-subbalancing
number if

1424+ m—1D)+D=mn+1)+n+2) + -+ (n+7) (2)
for some natural number r, which we call the D-subbalancer corresponding to D-subbalancing
number n. If D is a negative integer, say D = —R , we call n a R-superbalancing number and

r, a R-superbalancer corresponding to n.

Since, without D, the left hand side of (2) is less than the right hand side, we prefer the
name subbalancing number for n. A similar justification applies when D is negative. Observe
that when D = 0, the above definition coincides with that of balancing numbers; hence, we
prefer to exclude the case D = 0 from the above definition. Let D > 0 and simplifying equation
(2), we get
(n+7r)(n+r+1)

5 .

Thus, n is a D-subbalancing number then n? + D is a triangular number or, equivalently,

8n? + 8D + 1 is a perfect square. The D-subbalancer r corresponding to n is given by

r— %[—(1+2n)+\/m]- (3)

n*+ D =
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Observe that the value of n will generally depend on the choice of D and the existence of n
is not ascertained for each value of D, for example, if D = 7, then 8n? 4+ 8D + 1 = 8n? + 57 is
not a perfect square for any natural number n. Hence, the choice of D plays a crucial role.

It is well-known that for each positive integer n, 8b2 + 8b,, + 1 is a perfect square. A variant
of this result is given in the following lemma.

Lemma 1 For m € N,

(1) Bgn ‘I‘ bzm — %|iBm1—|—25Bm—1:| |iBm1—|—25Bm+1:|

] 2 _ 1 Bm+1+5Bm_1 Bm+1+5Bm+1
(21) By, + boms1 = 5{ 5 5

Proof Since 8B? + 1= C? and B,,_1 = 3B,, — Cp,, we have

(Bm—l ‘I’ 5Bm)2 - Cyzn - (Bm—l ‘I’ 5Bm)2 - (3Bm - Bm—1)2
= 16(Bm-1Bn + B2)
2m—2 _ Q2m—2 2m __ Q2m 2m __ Q2m\ 2
ol () |
442 442 442

1
— §[a4m—2 + /64m—2 _ Oé2 _ 62 + a4m — 24 ﬁ4m]

1
— 5[2\/§a4m—1 _ 2\/5/64’”),—1 _ 8]
= 8 bom,

hence (1) follows. The proof of (2) follows from
(Bms1 + 5Bm)? — C2 = (Bpmy1 + 5Bn)* — (3B — Bp1)?
= 16(Bpm+1Bm + B)
a2m+2 _ /62m+2 a2m — /62m a2m — /62m 2
: +
V2 4V2 ( 4V2 ) }

1
_ §[a4m+2 R g2 52 4 gtm 9 _l_/64m]

1
— 5[2\/5044711-1-1 _ 2\/§ﬁ4m+1 _ 8]

= 8 bam1- U

= 16

The above lemma ensures the existence of subbalancing numbers when D is restricted to
cobalancing numbers.

If £ =1, then b, = 0 and the concept of bi-subbalancing numbers coincides with that of
balancing numbers. The definition of subbalancing numbers excludes this case. If k = 2 then
br = 2 and the requirement for a positive integer n to be a bg-subbalancing number is that
8n? + 17 be a perfect square. But according to Rout and Panda [4], such numbers are 3-gap
balancing numbers and are of the form 5B, + C,,.
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2.1 bsz-subbalancing Numbers

By virtue of Definition 1, a natural number n is a bz-subbalancing number if
I424+-+(n—-1D+U4=n+1)+n+2)+ -+ (n+7r) (4)
for some natural number r, which is a bs-subbalancer corresponding to n.

Example 1 Since 0 + 14 = 2 + 3 + 4 + 5, we accept 1 as a bs-subbalancing number with
bs-subbalancer 4. Further 1+2+---4+74+14 =9+ 10+ 11412, 8 is a bs-subbalancing number
with bs-subbalancer 4.

It follows from equations (3) and (4) that, if n is a bs-subbalancing number then the corre-

sponding bs-subbalancer is
(2n +1) +v8n? + 113
5 .

From the above discussion, we notice that if z is a bs-subbalancing number then 822 + 113
is a perfect square. Since 113 is prime, the congruence

r =

1212% = 82* + 113(mod 113)

gives
11z = £v822 + 113 (mod 113).

2 _ 2 . .
Thus, HESEHS op He=v82-+113 jg 4 natural number. Since

8[11z + /82 + 113}2 . [11\/8z2 + 113 + 872
113 N 113 '

it follows that either

11z + v8x% + 113 o 11z — /822 + 113

T
113 113

is a balancing number [1, p.98] Letting

1z +/822 + 113
N 113 '

B

we obtain
(113B — 112)* = 8z% + 113,

which leads to the quadratic equation
2? —22Br + 113B* — 1 = 0.

whose solutions are x = 11B + C, (C is the Lucas-balancing, C' = v/8B2? +1). We further
observe that
8(11B £ C)? + 113 = (8B £ 110)%.

Thus, the bs-subbalancing numbers are of the form 118 + ' and hence the set

{11, +C,11B114 = Ci41: 1=0,1,---} (5)
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lists all the bsz-subbalancing numbers.

The above discussion confirms that the set in (5) is the exhaustive list of bs—subbalancing
numbers and hence we have the following theorem:

Theorem 1 The bs—subbalancing numbers partition in two classes of the form 11B;+Cj, 11 B4, —
Ciy1,1 > 0.
2.2 Computation of bs-subbalancing Numbers

In view of the definition 1, a natural number n is a bs-subbalancing number if
I+2+-4+n—-1)+42=0+1)+(n+2)+ -+ (n+r) (6)
for some natural number r, which is the bs-subbalancer corresponding to n.

Example 2 From the following examples 2,6,47 and 57 are bs-subbalancing numbers with
29,26, 26 and 29 as corresponding bs-subbalancers.

1.1+492=3+4+---+31

2.14+24+3+44+5+492=7+8+---+32
3. 1+2+---+464+492 =48 4494 ---+ 73
4. 1+2+---4+564+492 =58+59+ -+ 86

It is easy to see that if n is a bs-subbalancing number then the corresponding bs-subbalancer
1
is r = 5[—(271 + 1) + V8n? +3937]. We infer from the above discussion that, if z is a bs-

subbalancing number then 82243937 is a perfect square. Thus, computation of bs-subbalancing
numbers reduces to solving the Diophantine equation

822 + 3937 = ¢~ (7)

To find all the bs-subbalancing numbers one needs to solve the generalized Pell’s equation
y? — 8x? = 3937. The bounds for its fundamental solutions are |y| < /7874 < 89 and 0 < z <
\/3937/8 < 23 ( see [7]). Thus, we need to find those integers x in the interval [0,23) such
that 822+ 3937 is a perfect square. This happens for (z,y) = (2,463) and (6, +65) from which
it is easy to see that there are four fundamental solutions —63 + 2v/8, —65 + 6v/8, 63 + 2v/8
and 65 + 61/8 respectively. Using techniques similar to that used in [6], we get the following
four classes of solutions for bs-subbalancing numbers in terms of balancing and Lucas-balancing
numbers:

{633[ + 2Cy, 63B;41 —2C,, 65B; +6C;, 65B;.1 —6C;4q:1=0,1,--- }
Thus, we have the following theorem:

Theorem 2 The bs—subbalancing numbers can be classified in four classes of the form 63B; +
2CY, 63811 —2C)4q, 65B; +6C), 658,17 —6C;1 :1>0.
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From the above discussion, it is clear that for some values of k, there can be more than
two classes of bi-subbalancing numbers. Obtaining each class is a difficult task; however, we
employ the same techniques used by the author in [5] for obtaining two classes of solutions.

In the following theorems we explore two classes of bg-subbalancing numbers corresponding
to even and odd positive integer k.

Theorem 3 For m > 1, the values of x satisfying the Diophantine equation
142+ +@—-1D)+bpm=(+1)+(x+2)+---+(x+71)

for some r, may result in multiple classes. Two such classes of solutions are
(Bm—1 + 5Byn) B + BnC; and (By—1 + 5By)Bis1 — BrnCria

forl > 0.

Proof In view of (3), 822 + 8bg,, + 1 is perfect square. Since, 8 B2 + 8by,, + 1 is a perfect
square (Lemma 1), the congruence

(8B2 + 8by,, + 1)a* = B2 (82 + 8bay, + 1) (mod 8bgy, + 1) (8)

holds. Hence any x satisfying the congruences

V/8B2, + 8byy, + 1 & = £B,,\/822 + 8bay, + 1 (mod 8by,, 4 1) (9)

is also a solution of the congruence (8). Thus, to obtain two classes of by,,-subbalancing num-
bers, we need to solve the congruences (9).

Equation (9) implies that

8b2m+1

or

8b2m + 1

i1s a natural number. Since

2

[ 2/BBZ, + 8bym + 1 £ Byuy/S22 + 8oy + 1
8b2m + 1

(82B,, = /327 + 8oy + 14/8BZ, + 8ba + 1
8b2m + 1

2

it follows that either

8b2m+1
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or

8b2m + 1

is a balancing number [1]. Letting

(Bpt1 + 5Bm)2 + Bpuy/322 + 8bam + 1

B =
8boy, + 1

we get
[(By—1 + 5B )z — B(8bgy + 1)]* = B2 (82 + 8byy, + 1)

which can be transformed to the quadratic equation
2? —2(By_1 +5B)B x + B*(8by,, +1) — B2 =0

whose solutions are © = (B,,—1 + 5B,,) B £ B,,C. We further observe that

8[(Bm_1 + 5Bm)B £ B,,C)? + 8by,, + 1 = [(Bp_1 + 5B,,)C £ 8B, B]*.

169

Thus, two classes of by,,-subbalancing numbers are (B,,—1 + 5B,,)B; + B,C; and (B,,—1 +

5B,,)Bi+1 — BnCiqq for 1 > 0.
Theorem 4 For m > 1, the values of x satisfying the Diophantine equation
I+24+ -+ @-1)+bpa=@+1)+@+2)+--+(x+7)
may result in multiple classes. Two such classes of solutions are given by
(Bms1 + 5Bm) B+ BnCy and (Byy1 + 5By)Bis1 — BrnCria

forl > 0.

O

Proof By virtue of equation (3), 8% 4 8bay,+1 + 1 is perfect square. Since, 8 B + 8bgy1 + 1

is a perfect square (Lemma 1), the congruence
(8B2 + 8boy i1 + 1)2? = B2 (82 4 8byyiq + 1) (mod 8byyy1 + 1)

holds and is implied by

2/8B2, 4 8bap i1 + 1 = +Bu\/822 + 8bgyny1 + 1 (mod 8oy + 1)

and any solution of the latter congruence is a solution of the former and is a b, +1-subbalancing

number. In view of the latter congruence

$\/8Bfn + 8bgm41 + 1+ Bm\/85172 + 8bapy1 + 1
8bam41 + 1

or

2/8B2, + 8bami1 + 1 — Biyy/822 + 8boyy1 + 1
8bam41 + 1
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i1s a natural number. Since

2
+1

2/8B2, + 8bai1 + 1 £ By /822 + 8boyny1 + 1

8
8bam41 + 1

2

82 By, + /812 + 8bayny1 + 11/8B2, + 8bayy1 + 1
8bam41 + 1

it follows that either

$\/8Bfn + 8bgm41 + 1+ Bm\/85172 + 8boyy1 + 1
8bam41 + 1

or

2+/8B2, + 8bami1 + 1 — By /822 + 8boyni1 + 1
8bam41 + 1

is a balancing number [1]. Letting

(Bmt1 + 5Bm)T £ Biy/822 + 8bopi1 + 1

B =
8bam41 + 1

we get
[(Bps1 + 5Bm)x — B(8bgms1 + 1)]> = B2, (82 + 8bypmyr + 1),

which, on rearrangement, results in the quadratic equation
2? — 2(Byi1 + 5By) B x4+ B*(8bami1 + 1) — B2 =0,

whose solutions are © = (B,+1 + 5B,,)B £ B,,C. We further observe that

8[(Bmi1 + 5Bm)B & By, O] + 8boyi1 + 1 = [(Bpy1 + 5B,,)C 4 8B, B]*.

170

Thus, two classes of by,,+1-subbalancing numbers are (Bp,+1 + 5By )B; + B Ci and (B4 +

SBm)BH_l — BmCH_l fOI' l 2 0.

O

In view of the above theorems, for a fixed positive integer m, the by,,-subbalancing numbers
are given by Top = (Bm_1 + 5Bm)Bl + BmCl, To2l+1 = (Bm_1 + 5Bm)Bl+1 — Bmol—l—l and the
bam+1-subbalancing numbers are xo; = (Bp11 + 5Bm) Bi + BnCl, 2941 = (Bmt1 + 5Bm) Biar —
B,,Cyq for [ > 0. Since balancing and Lucas-balancing numbers satisfy the recurrence rela-
tion Y411 = 6Yn — Yn_1, it follows that b,,-subbalancing numbers satisfy the recurrence relation

Tpio = 06Ty — Tp_o,n > 3.

In the following theorem we give functions that transforms from balancing to subbalancing

numbers and subbalancing numbers to balancing numbers.

Theorem 5 For a balancing number x, f(x) = (Bpm—1 + 5Bm)x + BnvV8x2+ 1 and g(z) =

(Bm—1 + 5Bm)x — By /822 + 1 are by, -subbalancing numbers.
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We next find functions that transform bs,,-subbalancing numbers to balancing numbers. It
is easy to check that the functions are strictly increasing in the domain [0, 00). Hence their
inverses exist and are equal to

(Bt + 5Bpn)y — Biny/322 + Sbom + 1

-1 o
[ (y) = S 1

and

(Bm—1 + 5Bm)y + Bumy/822 + 8bam + 1
The above discussion leads to the following theorems.

9 () =

Theorem 6 Ify = (B,,—1 + 5B,,) B, + BnCy is bay,-subbalancing number then

8bor, + 1

B, =

and

(B-1+ 5Bm)\/8y? + 8bay, + 1 — 8y By,
8boy, + 1 ‘

Theorem 7 Ify = (B,,—1 + 5B)Bn — BnCy 18 bay,-subbalancing number then

(B-1+ 5Bn)y + Bu/8Y2 + 8bay, + 1
Sbom + 1

Cn =

B, =

and

(Bp-1+ 5Bm)\/8y2 + 8bay + 1 + 8y By,

C,=
8bam + 1

Theorem 8 If = is a balancing number then a(x) = (Bmnmi1 + 5Bm)r + Bpnv8x2 +1 and
B(z) = (Bms1 + 5Bm)x — B vV/8x2 + 1 are by, 1-subbalancing numbers.

We next find functions that transform bs,,,1-subbalancing numbers to balancing numbers.
It is easy to check that the functions are strictly increasing in the domain [0, c0). Hence their
inverses exist and are equal to

a~l(y) =

(Bpi1 + 5By — B/8x% + 8bgy, + 1
8bam1 +1

and

g1(y) = Brot +5Bn)y + Buy/8a? 1 8l + 1
8bam41 + 1 '
The above discussion leads to the following theorems.

Theorem 9 Ify = (By+1 + 5Bp,) By + BinCy is bayy1-subbalancing number then

(Bt1 + 5Bm)y — Bimr/8Yy? + 8bam + 1
8bam+1 +1

B, =

and

(Bps1 + 5Bm)\/8y2 + 8bgy + 1 — 8y By,

C, =
8bom+1 + 1
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Theorem 10 Ify = (By11 + 5Bp,) By — BinCh 18 bamy1-subbalancing number then

8bam1 +1

B, =

and

(Bpy1 + 5Bm)\/8y? + 8bgy + 1+ 8y B,
8bom+1 + 1 .

C,=

3 Conclusion

In this paper, we define D-subbalancing numbers by restricting D to cobalancing numbers.
However, for many values of D, D-subbalancer numbers exist. For example, one can verify
that a natural number z is a 6—subbalancing number if and only if 822 + 49 is a perfect square
and the values of z satisfying 822 + 49 = y? are 5—gap balancing numbers [4]. Indeed, finding
all feasible values of D is an interesting problem.
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