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Abstract A natural number n is called balancing number (with balancer r) if it satisfies
the Diophantine equation 1+2+ · · ·+(n−1) = (n+1)+(n+2)+ · · ·+(n+r). However, if

for some pair of natural numbers (n, r), 1+2+· · ·+(n−1) < (n+1)+(n+2)+· · ·+(n+r)
and equality is achieved after adding a natural number D to the left hand side then we call

n a D-subbalancing number with D-subbalancer number r. In this paper, such numbers
are studied for certain values of D.

Keywords Balancing and Lucas-balancing numbers, cobalancing numbers, Supercobal-
ancing numbers
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1 Introduction

Behera and Panda in [1] stated that a natural number n is called a balancing number with
balancer r if

1 + 2 + · · · + (n − 1) = (n + 1) + (n + 2) + · · · + (n + r).

Furthermore, they stated that if n is a balancing number then 8n2 + 1 is a perfect square. The
kth balancing number is denoted by Bk and Ck =

√

8B2
k

+ 1 is called the kth Lucas-balancing
number [2]. The balancing and Lucas-balancing numbers satisfy the recurrence relation xn+1 =
xn − xn−1 with initial terms B0 = 0, B1 = 1 and C0 = 1, C1 = 3 respectively. On other hand, n
is called a cobalancing number [3] with cobalancer r if

1 + 2 + · · · + n = (n + 1) + (n + 2) + · · · + (n + r).

The nth cobalancing number is denoted by bn and cobalancing numbers satisfy the nonhomo-
geneous recurrence b1 = 0, b2 = 2, bn+1 = 6bn − bn−1 + 2. The Binet forms are

Bn =
α2n − β2n

4
√

2
, Cn =

α2n + β2n

2
, bn =

α2n−1 − β2n−1

4
√

2
− 1

2
.
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where α = 1 +
√

2 and β = 1 −
√

2.

Rout and Panda [4] generalized the concept of balancing numbers and introduced gap
balancing numbers. If k is odd, they call a natural number n a k-gap balancing number if

1 + 2 + · · · +
(

n − k + 1

2

)

=
(

n +
k + 1

2

)

+
(

n +
k + 3

2

)

+ · · · + (n + r)

for some natural number r, which is a k-gap balancer corresponding to n, while for k even, if

1 + 2 + · · · +
(

n − k

2

)

=
(

n +
k

2
+ 1

)

+
(

n +
k

2
+ 2

)

+ · · · + (n + r)

for some natural numbers n and r then they call 2n + 1 a k-gap balancing number and r is
the corresponding k-gap balancer. In [5], Davala and Panda called n, a D-supercobalancing
number if for a fixed positive integer D, n satisfies the Diophantine equation

1 + 2 + · · · + n = (n + 1) + (n + 2) + · · · + (n + r) + D

for some natural number r, which they call as D-supercobalancer corresponding to n. Panda
and Panda [6] defined almost balancing numbers as the values of n satisfying the Diophantine
equation

1 + 2 + · · · + (n − 1) + 1 = (n + 1) + (n + 2) + · · · + (n + r) (1)

respectively for some r, which they called an almost balancer corresponding to n. They observed
that there are two classes of almost balancing numbers. The almost balancing numbers admits
a generalization. The last term 1 of the left hand side of (1) may be replaced by an arbitrary
integer D resulting the definition of subbalancing numbers.

2 Subbalancing Numbers

Definition 1 For a fixed positive integer D, we call a positive integer n, a D-subbalancing

number if

1 + 2 + · · · + (n − 1) + D = (n + 1) + (n + 2) + · · · + (n + r) (2)

for some natural number r, which we call the D-subbalancer corresponding to D-subbalancing

number n. If D is a negative integer, say D = −R , we call n a R-superbalancing number and

r, a R-superbalancer corresponding to n.

Since, without D, the left hand side of (2) is less than the right hand side, we prefer the
name subbalancing number for n. A similar justification applies when D is negative. Observe
that when D = 0, the above definition coincides with that of balancing numbers; hence, we
prefer to exclude the case D = 0 from the above definition. Let D > 0 and simplifying equation
(2), we get

n2 + D =
(n + r)(n + r + 1)

2
.

Thus, n is a D-subbalancing number then n2 + D is a triangular number or, equivalently,
8n2 + 8D + 1 is a perfect square. The D-subbalancer r corresponding to n is given by

r =
1

2
[−(1 + 2n) +

√
8n2 + 8D + 1 ]. (3)
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Observe that the value of n will generally depend on the choice of D and the existence of n
is not ascertained for each value of D, for example, if D = 7, then 8n2 + 8D + 1 = 8n2 + 57 is
not a perfect square for any natural number n. Hence, the choice of D plays a crucial role.

It is well-known that for each positive integer n, 8b2
n
+8bn +1 is a perfect square. A variant

of this result is given in the following lemma.

Lemma 1 For m ∈ N,

(1) B2
m

+ b2m = 1

2

[

Bm−1+5Bm−1

2

][

Bm−1+5Bm+1

2

]

(2i) B2
m

+ b2m+1 = 1

2

[

Bm+1+5Bm−1

2

][

Bm+1+5Bm+1

2

]

Proof Since 8B2
m

+ 1 = C2
m

and Bm−1 = 3Bm − Cm, we have

(Bm−1 + 5Bm)2 −C2

m
= (Bm−1 + 5Bm)2 − (3Bm − Bm−1)

2

= 16(Bm−1Bm + B2

m
)

= 16

[

α2m−2 − β2m−2

4
√

2
· α2m − β2m

4
√

2
+

(

α2m − β2m

4
√

2

)2]

=
1

2
[α4m−2 + β4m−2 − α2 − β2 + α4m − 2 + β4m]

=
1

2
[2
√

2α4m−1 − 2
√

2β4m−1 − 8]

= 8 b2m,

hence (1) follows. The proof of (2) follows from

(Bm+1 + 5Bm)2 −C2

m
= (Bm+1 + 5Bm)2 − (3Bm − Bm−1)

2

= 16(Bm+1Bm + B2

m
)

= 16

[

α2m+2 − β2m+2

4
√

2
· α2m − β2m

4
√

2
+

(

α2m − β2m

4
√

2

)2]

=
1

2
[α4m+2 + β4m+2 − α2 − β2 + α4m − 2 + β4m]

=
1

2
[2
√

2α4m+1 − 2
√

2β4m+1 − 8]

= 8 b2m+1. 2

The above lemma ensures the existence of subbalancing numbers when D is restricted to
cobalancing numbers.

If k = 1, then bk = 0 and the concept of b1-subbalancing numbers coincides with that of
balancing numbers. The definition of subbalancing numbers excludes this case. If k = 2 then
bk = 2 and the requirement for a positive integer n to be a b2-subbalancing number is that
8n2 + 17 be a perfect square. But according to Rout and Panda [4], such numbers are 3-gap
balancing numbers and are of the form 5Bn ± Cn.



Ravi Kumar Davala and G. K. Panda / MATEMATIKA 34:1 (2018) 163–172 166

2.1 b3-subbalancing Numbers

By virtue of Definition 1, a natural number n is a b3-subbalancing number if

1 + 2 + · · · + (n − 1) + 14 = (n + 1) + (n + 2) + · · · + (n + r) (4)

for some natural number r, which is a b3-subbalancer corresponding to n.

Example 1 Since 0 + 14 = 2 + 3 + 4 + 5, we accept 1 as a b3-subbalancing number with
b3-subbalancer 4. Further 1+2+ · · ·+7+14 = 9+10+11+12, 8 is a b3-subbalancing number
with b3-subbalancer 4.

It follows from equations (3) and (4) that, if n is a b3-subbalancing number then the corre-
sponding b3-subbalancer is

r =
−(2n + 1) +

√
8n2 + 113

2
.

From the above discussion, we notice that if x is a b3-subbalancing number then 8x2 + 113
is a perfect square. Since 113 is prime, the congruence

121x2 ≡ 8x2 + 113(mod 113)

gives
11x ≡ ±

√
8x2 + 113 (mod 113).

Thus, 11x+
√

8x2+113

113
or 11x−

√
8x2+113

113
is a natural number. Since

8
[11x ±

√
8x2 + 113

113

]2

+ 1 =
[11

√
8x2 + 113 ± 8x

113

]2

,

it follows that either
11x +

√
8x2 + 113

113
or

11x −
√

8x2 + 113

113

is a balancing number [1, p.98] Letting

B =
11x ±

√
8x2 + 113

113
,

we obtain
(113B − 11x)2 = 8x2 + 113,

which leads to the quadratic equation

x2 − 22Bx + 113B2 − 1 = 0.

whose solutions are x = 11B ± C , (C is the Lucas-balancing, C =
√

8B2 + 1). We further
observe that

8(11B ± C)2 + 113 = (8B ± 11C)2.

Thus, the b3-subbalancing numbers are of the form 11B ± C and hence the set

{11Bl + Cl, 11Bl+1 −Cl+1 : l = 0, 1, · · · } (5)
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lists all the b3-subbalancing numbers.

The above discussion confirms that the set in (5) is the exhaustive list of b3−subbalancing
numbers and hence we have the following theorem:

Theorem 1 The b3−subbalancing numbers partition in two classes of the form 11Bl+Cl, 11Bl+1−
Cl+1, l ≥ 0.

2.2 Computation of b5-subbalancing Numbers

In view of the definition 1, a natural number n is a b5-subbalancing number if

1 + 2 + · · · + (n − 1) + 492 = (n + 1) + (n + 2) + · · · + (n + r) (6)

for some natural number r, which is the b5-subbalancer corresponding to n.

Example 2 From the following examples 2, 6, 47 and 57 are b5-subbalancing numbers with
29, 26, 26 and 29 as corresponding b5-subbalancers.

1. 1 + 492 = 3 + 4 + · · · + 31

2. 1 + 2 + 3 + 4 + 5 + 492 = 7 + 8 + · · · + 32

3. 1 + 2 + · · · + 46 + 492 = 48 + 49 + · · · + 73

4. 1 + 2 + · · · + 56 + 492 = 58 + 59 + · · · + 86

It is easy to see that if n is a b5-subbalancing number then the corresponding b5-subbalancer

is r =
1

2
[−(2n + 1) +

√
8n2 + 3937 ]. We infer from the above discussion that, if x is a b5-

subbalancing number then 8x2+3937 is a perfect square. Thus, computation of b5-subbalancing
numbers reduces to solving the Diophantine equation

8x2 + 3937 = y2. (7)

To find all the b5-subbalancing numbers one needs to solve the generalized Pell’s equation
y2 − 8x2 = 3937. The bounds for its fundamental solutions are |y| ≤

√
7874 < 89 and 0 ≤ x ≤

√

3937/8 < 23 ( see [7]). Thus, we need to find those integers x in the interval [0, 23) such
that 8x2 +3937 is a perfect square. This happens for (x, y) = (2,±63) and (6,±65) from which
it is easy to see that there are four fundamental solutions −63 + 2

√
8, −65 + 6

√
8, 63 + 2

√
8

and 65 + 6
√

8 respectively. Using techniques similar to that used in [6], we get the following
four classes of solutions for b5-subbalancing numbers in terms of balancing and Lucas-balancing
numbers:

{63Bl + 2Cl, 63Bl+1 − 2Cl+1, 65Bl + 6Cl, 65Bl+1 − 6Cl+1 : l = 0, 1, · · · }

Thus, we have the following theorem:

Theorem 2 The b5−subbalancing numbers can be classified in four classes of the form 63Bl +
2Cl, 63Bl+1 − 2Cl+1, 65Bl + 6Cl, 65Bl+1 − 6Cl+1 : l ≥ 0.
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From the above discussion, it is clear that for some values of k, there can be more than
two classes of bk-subbalancing numbers. Obtaining each class is a difficult task; however, we
employ the same techniques used by the author in [5] for obtaining two classes of solutions.

In the following theorems we explore two classes of bk-subbalancing numbers corresponding
to even and odd positive integer k.

Theorem 3 For m > 1, the values of x satisfying the Diophantine equation

1 + 2 + · · · + (x− 1) + b2m = (x + 1) + (x + 2) + · · · + (x + r)

for some r, may result in multiple classes. Two such classes of solutions are

(Bm−1 + 5Bm)Bl + BmCl and (Bm−1 + 5Bm)Bl+1 − BmCl+1

for l > 0.

Proof In view of (3), 8x2 + 8b2m + 1 is perfect square. Since, 8B2
m

+ 8b2m + 1 is a perfect
square (Lemma 1), the congruence

(8B2

m
+ 8b2m + 1)x2 ≡ B2

m
(8x2 + 8b2m + 1) (mod 8b2m + 1) (8)

holds. Hence any x satisfying the congruences

√

8B2
m

+ 8b2m + 1 x ≡ ±Bm

√

8x2 + 8b2m + 1 (mod 8b2m + 1) (9)

is also a solution of the congruence (8). Thus, to obtain two classes of b2m-subbalancing num-
bers, we need to solve the congruences (9).

Equation (9) implies that

x
√

8B2
m

+ 8b2m + 1 + Bm

√
8x2 + 8b2m + 1

8b2m + 1

or
x
√

8B2
m

+ 8b2m + 1 − Bm

√
8x2 + 8b2m + 1

8b2m + 1

is a natural number. Since

8

[

x
√

8B2
m

+ 8b2m + 1 ± Bm

√
8x2 + 8b2m + 1

8b2m + 1

]2

+ 1

=

[

8xBm ±
√

8x2 + 8b2m + 1
√

8B2
m

+ 8b2m + 1

8b2m + 1

]2

,

it follows that either
x
√

8B2
m

+ 8b2m + 1 + Bm

√
8x2 + 8b2m + 1

8b2m + 1
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or
x
√

8B2
m

+ 8b2m + 1 − Bm

√
8x2 + 8b2m + 1

8b2m + 1

is a balancing number [1]. Letting

B =
(Bm−1 + 5Bm)x ± Bm

√
8x2 + 8b2m + 1

8b2m + 1

we get
[(Bm−1 + 5Bm)x− B(8b2m + 1)]2 = B2

m
(8x2 + 8b2m + 1)

which can be transformed to the quadratic equation

x2 − 2(Bm−1 + 5Bm)B x + B2(8b2m + 1) −B2

m
= 0

whose solutions are x = (Bm−1 + 5Bm)B ± BmC. We further observe that

8[(Bm−1 + 5Bm)B ± BmC ]2 + 8b2m + 1 = [(Bm−1 + 5Bm)C ± 8BmB]2.

Thus, two classes of b2m-subbalancing numbers are (Bm−1 + 5Bm)Bl + BmCl and (Bm−1 +
5Bm)Bl+1 − BmCl+1 for l ≥ 0. 2

Theorem 4 For m ≥ 1, the values of x satisfying the Diophantine equation

1 + 2 + · · · + (x − 1) + b2m+1 = (x + 1) + (x + 2) + · · · + (x + r)

may result in multiple classes. Two such classes of solutions are given by

(Bm+1 + 5Bm)Bl + BmCl and (Bm+1 + 5Bm)Bl+1 − BmCl+1

for l > 0.

Proof By virtue of equation (3), 8x2 + 8b2m+1 + 1 is perfect square. Since, 8B2
m

+ 8b2m+1 + 1
is a perfect square (Lemma 1), the congruence

(8B2
m

+ 8b2m+1 + 1)x2 ≡ B2
m

(8x2 + 8b2m+1 + 1) (mod 8b2m+1 + 1)

holds and is implied by

x
√

8B2
m

+ 8b2m+1 + 1 ≡ ±Bm

√

8x2 + 8b2m+1 + 1 (mod 8b2m+1 + 1)

and any solution of the latter congruence is a solution of the former and is a b2m+1-subbalancing
number. In view of the latter congruence

x
√

8B2
m

+ 8b2m+1 + 1 + Bm

√

8x2 + 8b2m+1 + 1

8b2m+1 + 1

or
x
√

8B2
m

+ 8b2m+1 + 1 − Bm

√

8x2 + 8b2m+1 + 1

8b2m+1 + 1



Ravi Kumar Davala and G. K. Panda / MATEMATIKA 34:1 (2018) 163–172 170

is a natural number. Since

8

[

x
√

8B2
m

+ 8b2m+1 + 1 ± Bm

√

8x2 + 8b2m+1 + 1

8b2m+1 + 1

]2

+ 1

=

[

8xBm ±
√

8x2 + 8b2m+1 + 1
√

8B2
m

+ 8b2m+1 + 1

8b2m+1 + 1

]2

it follows that either

x
√

8B2
m

+ 8b2m+1 + 1 + Bm

√

8x2 + 8b2m+1 + 1

8b2m+1 + 1

or
x
√

8B2
m

+ 8b2m+1 + 1 − Bm

√

8x2 + 8b2m+1 + 1

8b2m+1 + 1

is a balancing number [1]. Letting

B =
(Bm+1 + 5Bm)x± Bm

√

8x2 + 8b2m+1 + 1

8b2m+1 + 1

we get
[(Bm+1 + 5Bm)x −B(8b2m+1 + 1)]2 = B2

m
(8x2 + 8b2m+1 + 1),

which, on rearrangement, results in the quadratic equation

x2 − 2(Bm+1 + 5Bm)B x + B2(8b2m+1 + 1) − B2

m
= 0,

whose solutions are x = (Bm+1 + 5Bm)B ± BmC . We further observe that

8[(Bm+1 + 5Bm)B ±BmC ]2 + 8b2m+1 + 1 = [(Bm+1 + 5Bm)C ± 8BmB]2.

Thus, two classes of b2m+1-subbalancing numbers are (Bm+1 + 5Bm)Bl + BmCl and (Bm+1 +
5Bm)Bl+1 − BmCl+1 for l ≥ 0. 2

In view of the above theorems, for a fixed positive integer m, the b2m-subbalancing numbers
are given by x2l = (Bm−1 + 5Bm)Bl + BmCl, x2l+1 = (Bm−1 + 5Bm)Bl+1 − BmCl+1 and the
b2m+1-subbalancing numbers are x2l = (Bm+1 + 5Bm)Bl + BmCl, x2l+1 = (Bm+1 + 5Bm)Bl+1 −
BmCl+1 for l ≥ 0. Since balancing and Lucas-balancing numbers satisfy the recurrence rela-
tion yn+1 = 6yn − yn−1, it follows that bm-subbalancing numbers satisfy the recurrence relation
xn+2 = 6xn − xn−2, n ≥ 3.

In the following theorem we give functions that transforms from balancing to subbalancing
numbers and subbalancing numbers to balancing numbers.

Theorem 5 For a balancing number x, f(x) = (Bm−1 + 5Bm)x + Bm

√
8x2 + 1 and g(x) =

(Bm−1 + 5Bm)x − Bm

√
8x2 + 1 are b2m-subbalancing numbers.
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We next find functions that transform b2m-subbalancing numbers to balancing numbers. It
is easy to check that the functions are strictly increasing in the domain [0,∞). Hence their
inverses exist and are equal to

f−1(y) =
(Bm−1 + 5Bm)y − Bm

√
8x2 + 8b2m + 1

8b2m + 1

and

g−1(y) =
(Bm−1 + 5Bm)y + Bm

√
8x2 + 8b2m + 1

8b2m + 1
.

The above discussion leads to the following theorems.

Theorem 6 If y = (Bm−1 + 5Bm)Bn + BmCn is b2m-subbalancing number then

Bn =
(Bm−1 + 5Bm)y − Bm

√

8y2 + 8b2m + 1

8b2m + 1

and

Cn =
(Bm−1 + 5Bm)

√

8y2 + 8b2m + 1 − 8yBm

8b2m + 1
.

Theorem 7 If y = (Bm−1 + 5Bm)Bn − BmCn is b2m-subbalancing number then

Bn =
(Bm−1 + 5Bm)y + Bm

√

8y2 + 8b2m + 1

8b2m + 1

and

Cn =
(Bm−1 + 5Bm)

√

8y2 + 8b2m + 1 + 8yBm

8b2m + 1
.

Theorem 8 If x is a balancing number then α(x) = (Bm+1 + 5Bm)x + Bm

√
8x2 + 1 and

β(x) = (Bm+1 + 5Bm)x −Bm

√
8x2 + 1 are b2m+1-subbalancing numbers.

We next find functions that transform b2m+1-subbalancing numbers to balancing numbers.
It is easy to check that the functions are strictly increasing in the domain [0,∞). Hence their
inverses exist and are equal to

α−1(y) =
(Bm+1 + 5Bm)y − Bm

√
8x2 + 8b2m + 1

8b2m+1 + 1

and

β−1(y) =
(Bm+1 + 5Bm)y + Bm

√
8x2 + 8b2m + 1

8b2m+1 + 1
.

The above discussion leads to the following theorems.

Theorem 9 If y = (Bm+1 + 5Bm)Bn + BmCn is b2m+1-subbalancing number then

Bn =
(Bm+1 + 5Bm)y − Bm

√

8y2 + 8b2m + 1

8b2m+1 + 1

and

Cn =
(Bm+1 + 5Bm)

√

8y2 + 8b2m + 1 − 8yBm

8b2m+1 + 1
.
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Theorem 10 If y = (Bm+1 + 5Bm)Bn − BmCn is b2m+1-subbalancing number then

Bn =
(Bm+1 + 5Bm)y + Bm

√

8y2 + 8b2m + 1

8b2m+1 + 1

and

Cn =
(Bm+1 + 5Bm)

√

8y2 + 8b2m + 1 + 8yBm

8b2m+1 + 1
.

3 Conclusion

In this paper, we define D-subbalancing numbers by restricting D to cobalancing numbers.
However, for many values of D, D-subbalancer numbers exist. For example, one can verify
that a natural number x is a 6−subbalancing number if and only if 8x2 +49 is a perfect square
and the values of x satisfying 8x2 + 49 = y2 are 5−gap balancing numbers [4]. Indeed, finding
all feasible values of D is an interesting problem.
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