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Abstract In this paper, we propose a method how to manage the convergence of
Newton’s method if its iteration process encounters a local extremum. This idea es-
tablishes the osculating circle at a local extremum. It then uses the radius of the
osculating circle also known as the radius of curvature as an additional number of
the local extremum. It then takes that additional number and combines it with the
local extremum. This is then used as an initial guess in finding a root near to that
local extremum. This paper will provide several examples which demonstrate that the
proposed idea is successful and they perform to fulfill the aim of this paper.
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1 Introduction

One of the most frequently occuring problems in scientific work is to find the roots of the
equation of the form

f(x) = 0. (1)

Iterative procedures for solutions of (1) are routinely employed. Starting with the classical
Newton’s method, several methods for finding roots of equations have come to exist each
of which has its own advantages and limitations.

The Newton’s method of root finding based on the iterative formula is given by

xk+1 = xk −
f(xk)

f ′(xk)
. (2)

Newton’s method displays a faster quadratic convergence near the root while it requires
evaluation of the function and its derivative at each step of the iteration.

However, when the derivative evaluated is zero, Newton’s method stalls [1]. Newton’s
method will face several obstacles if it has small values of the derivative, the Newton iteration
off shoots away from the current point of iteration and may possible converge to a root
far away from the intended domain. For certain forms of equations, Newton’s method
diverges or oscillates and fails to converge to the desire root. We observe these obstacles by
considering the function with expression

f(x) = x3 − x2 − x + 3,
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where its graph is given in Figure 1 and Figure 2 [2]. If we start the iteration at x0 where
x0 is a fixed number in the interval (1.5,1.6), then we will obtain infinite sequence like

x0, x1, x0. x1, . . .

which does not converge to x∗, the root of f (See Figure 1).

Figure 1: Newton’s iteration will oscillate between x0, x1, x0. x1, . . .

Figure 2: Starting at x0, the Newton’s iteration yield no solution (+∞)

If we start at x0 ≈ 0.999... as shown in Figure 2, we may get x1 which approaches +∞
(exceed the computer number). Therefore the algorithm cannot proceed.

In this paper, we would like to compute all the zeroes of a function when its graph looks
like in Figure 3.

Figure 3: Graph of f(x) = sin(x) + sin(2x/3), x ∈ [3, 20]



Determining radius of convergence of Newton’s method using radius of curvature 45

Furthermore, if the derivative of a function f(x) at a point is zero, then the point is a
critical point of f(x), and special for this case, we consider those points as minimizer or
maximizer (extreme). Our idea is that how does Newton’s method can still be used where
its initial point as an initial is minimizer or maximizer.

When the Newton’s methods applied to a point which has zero derivative, the iterative
process would not work properly since the denominator equals to zero. In order to ensure
that Newton’s method can still be employed, it needs to add a number to that minimizer
or maximizer so that its derivative at this summand does not equal to zero. The question
is how to obtain a suitable number such that no zero exists between that extreme point
and the summand? Of course we cannot add any numbers, therefore, we use the theory of
curvature of a function at any extreme or critical points for Newton’s method works.

In Section 2, it will be explained in advance of curvature and radius of curvature.Section
3 contains the explanation how the radius of curvature can be used to satisfy the Liptschitz
property for Newton’s method. The illustration of the idea of curvature through an example
is given in Section 4. In Section 5, it will be shown that how to improve the idea of curvature
if the curve bends very sharply. 20 testing examples have been used to observe the impact
of the proposed algorithm as given in Section 6. The conclusion which ends this paper, will
be given in Section 7.

2 Curvature of a function

The idea of curvature is the measure of how sharply a curve bends. We would expect the
curvature to be 0 for a straight line, and to be very small for curves which bend sharply. If
someone moves along a curve, the direction of the tangent line will not change as long as
the curve is flat. Its direction will change if the curve bends. The more the curve bends,
the more the direction of the tangent line will change. As known that the movement of
Newton’s method searching process is depended on the tangent line of each iteration. We
are thus led to the following definition and theorems which are taken from [2].

Definition 1 [2] Let the curve C be given by the differentiable vector function f(t) =
f1(t)i + f2(t)j. Suppose that φ(t) denotes the direction of f ′(t).

(i) The curvature of C, denoted by κ(t), is the absolute value of the rate of change of
direction with respect to arc length (s), that is,

κ(t) =

∣

∣

∣

∣

dφ

ds

∣

∣

∣

∣

where κ(t) ≥ 0.

(ii) The radius of curvature ρ(t) is defined by ρ(t) =
1

κ(t)
, if κ(t) > 0.

Theorem 1 [2] If T (t) denotes the unit tangent vector to f, then κ(t) =

∣

∣

∣

∣

dT

ds

∣

∣

∣

∣

.

Theorem 2 [2] If C is a curve with equation y = f(x) where f is twice differentiable,

κ =
|f”(x)|

(

1 + (f ′(x))
2
)3/2

.
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According to [3], when the curvature κ(t) > 0, the centre of curvature lies along the direction
of N(t) at distance 1/κ from the point α(t). When κ(t) < 0, the center of curvature lies
along the direction −N(t) at distance −1/κ from α(t). In either case, the centre of curvature
is located at

α(t) +
1

κ(t)
N(t).

The osculating circle when κ 6= 0, is the circle at the centre of curvature with radius 1/ |κ|
which is called the radius of curvature. The osculating circle approximates the curve locally
up to the second order (the illustration is in Figure 4).

Figure 4: Approximation of the osculating circle to the curve y = 3/x

3 An appropriate initial guess

It has been mentioned in Section 1 that the idea is to find a promised number to be added
to extreme point such that the new point will be a good initial guess for Newton’s method
succeeded in finding the zero point of a function.

Let consider Figure 5.

Figure 5: Finding a suitable initial point for Newton’s iteration

Basically, in order to make Newton’s method converges to x∗, the zero of a function
f , an initial estimation that is closed enough to x∗, is needed. Therefore, for obtaining a
suitable number named ρ must be searched such that x∗

k + ρ becomes the best estimation
as an initial point for Newton’s iteration. In the above explanation, the radius of curvature
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of f (x) can be employed as ρ. Therefore x∗
k + ρ is one of the initial best estimation when

the Newton’s method is used to find the root of f (x). Therefore, it can be proved that
η = |x∗

k + ρ− x∗| is the radius of the largest interval around x∗ in which the application
of Newton’s method to any point in (x∗ − η, x∗ + η) will converge to x∗. However, the
following definition is needed.

Definition 2 [4] The function f : D ⊂ R → R is Lipschitz continuous function with
constant γ in an interval D, written f ∈ Lipγ (D) , if for every x, y ∈ D,

|f (x) − f (y)| ≤ γ |x − y| .

For the convergence of Newton’s method, we need to show that f ′ ∈ Lipγ (D). This
condition has been shown in [4] through the following Lemma.

Lemma 1 [4] If (i) f : D ⊂ R → R for an open interval D, (ii) f ′ ∈ Lipγ (D), then for
any x, y ∈ D,

|f(y) − f(x) − f ′(x)(y − x)| ≤
γ(y − x)2

2
.

For most problems, Newton’s method will converge q-quadratically to the root of one
nonlinear equation with one variable. We shall now state the fundamental theorem of
numerical mathematics.

Theorem 3 [4] If (i) f : D ⊂ R → R for an open interval D, (ii) f ′ ∈ Lipγ (D), (iii) for
some β > 0, |f ′(x)| ≥ β for every x ∈ D, (iv) f(x) = 0 has a solution x∗ ∈ D, for some
η > 0 such that if |x0 − x∗| < η, then the sequence {xn} generated by

xn+1 = xn −
f (xn)

f ′ (xn)
(n = 0, 1, 2, ...)

exists and converges to x∗. Furthermore , for (n = 0, 1, 2, ...)

|xn+1 − x∗| ≤
γ

2β
|xn − x∗|2. (3)

Now, we will prove that η̂ = |x∗
1 + ρ̂− x∗| is a radius of the largest interval around the

solution of f(x) = 0 as shown in the following theorem.

Theorem 4 If (i) f : D ⊂ R → R is an objective function with x∗
1 is a local minima of

f(x), (ii) f ′ ∈ Lipγ (X), (iii) for some ρ > 0, |f ′(x)| ≥ ρ for every x ∈ D, (iv) f(x) = 0
has a solution x∗ ∈ D, for some η > 0 such that if |x0 − x∗| < η, then the sequence {xn}
generated by

xn+1 = xn −
f (xn)

f ′ (xn)
(n = 0, 1, 2, ...)

exists and converges to x∗. Furthermore , for (n = 0, 1, 2, ...)

|xn+1 − x∗| ≤
γ

2ρ
|xn − x∗|2. (4)
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Proof Let ρ̂ be the radius of curvature of f(x) at x∗
1. Let η̂ be the radius of the largest

interval around x∗, that is contained in D and define

η = min{η̂, (2ρ/γ)}.

We will show by induction that for n = 0, 1, 2, ..., the equation (4) holds, and

|xn+1 − x∗| ≤ |xn − x∗| < η.

Take η̂ = |x∗
k + ρ̂− x∗| as the radius of the largest interval around x∗ ∈ D, and let x0 =

x∗
k + ρ̂ be an initial point which is a lower bound or an upper bound of [x∗ − η̂ , x∗ + η̂].

The proof simply shows at each iteration that the new error |xn+1 − x∗| is bounded by a
constant times the error the affine model makes, in approximating f at x∗.

For n = 0, we have

x1 − x∗ = x0 − x∗ −
f (x0)

f ′ (x0)
= x0 − x∗ −

f (x0) − f (x∗)

f ′ (x0)

= x∗
k + ρ̂ − x∗ −

f (x∗
k + ρ̂) − f (x∗)

f ′ (x∗
k + ρ̂)

=
x∗

kf ′ (x∗
k + ρ̂)

f ′ (x∗
k + ρ̂)

+
ρ̂f ′ (x∗

k + ρ̂)

f ′ (x∗
k + ρ̂)

−
x∗f ′ (x∗

k + ρ̂)

f ′ (x∗
k + ρ̂)

−
f (x∗

k + ρ̂) − f (x∗)

f ′ (x∗
k + ρ̂)

=
1

f ′ (x∗
k + ρ̂)

[f (x∗) − f (x∗
k + ρ̂) − x∗f ′ (x∗

k + ρ̂) + x∗
kf ′ (x∗

k + ρ̂) + ρ̂ f ′ (x∗
k + ρ̂)]

=
1

f ′ (x∗
k + ρ̂)

[f (x∗) − f (x∗
k + ρ̂) − f ′ (x∗

k + ρ̂) (x∗ − x∗
k − ρ̂)]

By taking the absolute value of the above, we have

|x1 − x∗| =

∣

∣

∣

∣

1

f ′ (x∗
k + ρ̂)

[f (x∗) − f (x∗
k + ρ̂) − f ′ (x∗

k + ρ̂) (x∗ − x∗
k − ρ̂)]

∣

∣

∣

∣

.

Thus by Lemma 1, we have

|x1 − x∗| ≤
γ

2 |f ′ (x∗
k + ρ̂)|

|x∗
k + ρ̂ − x∗|

2

and by assumptions on f ′(x), we obtain

|x1 − x∗| ≤
γ

2ρ
|x∗

k + ρ̂ − x∗|
2
.

Since

|x∗
k + ρ̂− x∗| ≤ η ≤

2ρ

γ
,

we have

|x1 − x∗| ≤
γ

2ρ
|x∗

k + ρ̂ − x∗|2 ≤
γ

2ρ
|x∗

k + ρ̂ − x∗|
2ρ

γ
≤ |x∗

k + ρ̂ − x∗| < η.

The proof of the induction step then proceeds identically. �

Based on the above discussion, an experiment can be tried on several example problems
to demonstrate that the use of radius of curvature is quite effective to make Newton’s
method converges to the desire solutions.
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4 Numerical examples

In this section, for obtaining the nearest root closed enough to an extreme point, the initial
guesses x∗

k + ρ, and x∗
k − ρ are tried where x∗

k is an extreme point, and ρ is the radius of
curvature at this extreme point. Five examples (Exp.) given in Table 1, have been tried to
obtain a root to the right hand side of extreme point, and a root to the left extreme point
of each function.

Table 1: Data for the testing

Exp Function Domain Graph

1 f1(x) = x2 − 1 [−2, 2]

2 f2(x) = x2 + 2x − 3 [−5, 3]

3 f3(x) = x3 + x2 [−1.5,1]

4 f4(x) = sinx + sin
`

2

3
x

´

[3,10]

5 f5(x) = cos
`

3

5
x

´

cos(2x) + sinx [3,10]

Table 2 shows that the use of initial guess x∗
k + ρ, with x∗

k is a local extremum of a
function, and ρ is a radius of curvature at that local extremum, will make Newton’s method
(N) converges (C) to a root of a function closest to the local extremum. However, for Exp.
5 when the radius of curvature is too small, Newton’s method iterative process fails (F) to
carry the job. To overcome this obstacle, it has been made a modification to the radius of
curvature which will be discussed in the next section.

5 An improved starting point

Before we go through about this special case, now consider Figure 6.
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Table 2: Results of five testing examples

Exp. x∗

k ρ x∗+ f(x∗+) x∗− f(x∗−) N

1 0 0.5 1 0 −1 0 C

2 −1 0.5 1 0 −3 0 C

3 −2/3 0.5 −1.75962e−162 0 −1 0 C

4 5.36225 1.01755 7.53982 −1.01481e−016 3.76991 1.82363e−016 C

5 10.9598 0.191837 12.1839 4.40999e−016 6.71118 −1.89519 F

Figure 6: The behaviour of Newton’s method

Unfortunate case when Newton’s method encounters a trial guess near such a local
extremum, then Newton’s method will send its solution far away from the desired solution
(see Figure 6). This situation happened in Exp. 5 of Table 2 where the size of radius of
curvature to be added to the minima point is not enough to bring that point to the expected
root.

For details, in Exp. 5, x∗
k = 10.9598 is a minimizer of f5(x), ρ = 0.191837 is radius of

curvature at x∗
k, then x∗

k + ρ is an initial guess in finding the nearest root from x∗
k on the

right hand side, and x∗
k − ρ on the left hand side. In Table 2, it has been given a sign that

Exp. 5 failed in getting the root on the left hand side of x∗
k. Now we try to double up the

radius of curvatureto become 2ρ, and use x∗
k + 2ρ as the new initial guess, then with that

new initial guess, we will obtain x∗− = 9.93822 which is the nearest root of x∗
k on the left.

So we assume that the failure due to Exp. 5 caused by the small radius of curvature. To
overcome this obstacle, we decide to restrict the radius of curvature as

ρ ≥ r for r ∈ (0, 1).

The algorithm of modified radius of curvature can be described in Algorithm M.

Algorithm M

This simple algorithm computes ρ ∈ R using data (x0, ε, r ∈ R, m ∈ N) where x0 is local
extremum of a function, ε is a tolerance, r is a real number, and m is the maximum number
of iteration.
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1. ρj =

“

1+(f ′(x0))
2

”

3/2

|f”(x0)|
2. ρ := ρj

3. i := 1
4. while ρi < r do

4.1 ρi := iρj

4.2 i := i + 1
4.3 ρ := ρi

5. return.

6 Numerical results

In this section, the proposed method is employed to solve several nonlinear equations. All
experiments were performed on a personal computer with AMD Dual-Core Processor E-350
1.6 GHz and 2 GB memory. The operating system was Windows 7 Starter (32-bit) and the
implementations were done in Microsoft Visual C++ 6.0.

We used the following 20 test functions and display the approximate zeros x∗.

f1(x) = sin(x) + sin
(

2
3x

)

f2(x) = cos
(

3
5x

)

cos(2x) + sin(x)

f3(x) = cos
(

2
5x

)

sin
(

1
10x

)

+ cos(x) f4(x) = sin
(

4
9x

)

sin(x)

f5(x) = 1
2

cos(x) + 1
3

sin(2x) f6(x) = sin(2x) sin(x) + sin
(

2
3
x
)

f7(x) = −
5
∑

i=1

i cos {(i + 1)x + i} f8(x) = sin(x) + sin
(

10
3

x
)

+ lnx − 0.84x + 3

f9(x) = − exp(0.1x)
5

∑

i=1

{(i + 1)x + i} f10(x) = cos(x) + 10
3

cos
(

10
3

x
)

+ 1
x
− 0.84

f11(x) = −
5

∑

i=1

i sin {(i + 1)x + i} f12(x) = sin(x) + sin
(

10
3

x
)

+ lnx − 0.84x

f13(x) = −
5

∑

i=1

sin {(i + 1)x + i} f14(x) = x2 − 1

f15(x) = x2 + 2x − 3 f16(x) = x3 + x2

f17(x) = 2x2 − 1.05x4 + 1
6x6 − x f18(x) = x4 + 4x3 + 4x2 − 0.5

f19(x) = 3x − x3 f20(x) = x6 − 22x4 + 9x2 + 102

Table 3 shows that the use of radius of curvatute at the extreme point will make Newton’s
method always converges to the roots closed to this extreme point. Nonzero value of r
indicate that the functions have the small radius of curvature at their extreme points.

7 Conclusion

In this paper, we have presented that the radius of curvature at maximizer or minimizer
points can be used as an increment to those extremum points in the attempt to find the
radius of convergence of Newton’s method near to the said maximizer or minimizer of a
function. Numerical results show that our valuable method succeed in finding the desire
solutions.



52 Ridwan Pandiya and Ismail Bin Mohd

Table 3: Computational results of twenty testing examples

Exp x∗

k
ρ r x∗+ f(x∗+) r x∗− f(x∗−)

1 5.36225 1.01755 0 7.53982 −1.01481e−016 0 3.76991 1.82363e−016
8.39609 1.73864 0 9.42478 1.22461e−016 0 7.53982 −1.01481e−016
10.4535 1.73861 0 11.3097 −2.71918e−016 0 9.42478 1.22461e−016
13.4873 1.01755 0 15.0796 7.69079e−016 0 11.3097 −2.71918e−016
17.0392 0.721093 0 18.8496 −1.22461e−015 0 15.0796 7.69079e−016

2 10.9598 0.191837 0 12.1839 4.40999e−016 0.2 9.93822 −1.28993e−015

3 −15.708 0.854701 0 −13.4781 −6.18754e− 016 0 −17.9378 1.50541e−016
−12.1808 1.07705 0 −10.5816 −6.62719e−017 0 −13.4781 −6.18754e− 016
−9.5911 1.17664 0 −8.66132 −6.2244e−016 0 −10.5816 −6.62719e− 017
−6.4786 0.966118 0 −4.59502 −9.98415e−017 0 −8.66132 −6.2244e−016

−3.06054 0.920927 0 −1.44966 6.19554e−017 0 −4.59502 −9.98415e−017
0.0999216 1.00009 0 1.70283 3.91522e−017 0 −1.44966 6.19554e−017

3.23845 1.10178 0 4.88978 2.5247e−016 0 1.70283 3.91533e-017
6.07014 1.05587 0 7.16913 −2.27954e−016 0 4.88978 2.5247e−016
9.29931 0.88308 0 11.2033 8.2974e−016 0 7.16913 −2.27954e−016

4 −8.42662 1.03325 0 −7.06858 8.65927e−017 0 −9.42478 −3.18162e−016
−6.66794 1.12298 0 −6.28319 −8.3768e−017 0 −7.06858 8.65927e−017

−4.50953 0.877408 0 −3.14159 1.206e−016 0 −6.28319 −8.3768e−017
−1.93595 0.947863 0 −1.08393e−162 0 0 −3.14159 1.206e−016

1.93595 0.947863 0 3.14159 1.206e−016 0 1.08393e−016 0
4.50953 0.877408 0 6.28319 −8.3768e−017 0 3.14159 1.206e−016
6.66794 1.12298 0 7.06858 8.65927e−017 0 6.28319 −8.3768e−017
8.42662 1.03325 0 9.42478 −3.18162e−016 0 7.06858 8.65927e−017

5 2.56634 0.61094 0 3.98965 5.55112e−017 0 1.5708 7.14354e−017

6 4.231 0.219526 0 4.71239 -2.44921e-016 0 3.78726 −3.99529e−016
5.19377 0.219526 0 5.63752 −3.18051e−016 0 4.71239 −2.44921e−016

7 −9.28634 0.104062 0.1 −9.03415 −9.76996e−015 0.1 −9.55476 8.43769e−015

-8.79406 0.104051 0.1 −8.57612 5.77316e−015 0.1 −9.03415 −9.76996e−015
−8.29039 0.101354 0.1 −8.05487 3.55271e−015 0.1 -8.57612 5.77316e-015
−7.70831 0.102709 0.1 −7.40542 −7.21645e−015 0.1 −8.05487 3.55271e−015
−7.08351 0.101927 0.1 −6.73964 −3.19744e−014 0.1 −7.40542 −7.21645e−015
−6.47857 0.103276 0.1 −6.15885 −1.77636e−015 0.1 −6.73964 −3.19744e-014
−5.94894 0.10492 0.1 −5.70985 −1.5099e−014 0.1 −6.15885 −1.77636e−015
−5.4614 0.1052 0.1 −5.19666 −8.88178e−015 0.1 −5.70985 −1.5099e−014

−4.96318 0.104799 0.1 −4.71693 −1.11011e−015 0.1 −5.19666 −8.88178e−015
−4.47753 0.104027 0.1 −4.23649 4.76789e−015 0.1 −4.71693 −1.11011e−015
−3.98396 0.105011 0.1 −3.73129 2.88658e−015 0.1 −4.23649 4.76789e-015
−3.49725 0.100153 0.1 −3.27157 −2.22045e−015 0.1 −3.73129 2.88658e−015

−3.00316 0.104062 0.1 −2.75097 −1.33227e−015 0.1 −3.27157 −2.22045e−015
−2.51088 0.104052 0.1 −2.29294 4.44089e−016 0.1 −2.75097 −1.33227e−015

8 5.19978 0.334964 0.3 5.83696 8.88178e−016 0.3 4.60891 8.88178e−016
6.15443 0.364976 0.3 6.48083 8.88178e−016 0.3 5.83696 8.88178e−016
7.06776 0.385188 0.3 7.67077 8.88178e−016 0.3 6.48083 8.88178e−016
7.9385 0.338984 0.3 8.18818 −1.77636e−015 0.3 7.67077 8.88178e−016
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Table 3: (Continued)

Exp x∗

k
ρ r x∗+ f(x∗+) r x∗− f(x∗−)

9 4.48968 0.205434 0.2 4.74779 −3.65861e−015 0.2 4.02655 5.14902e−016
5.16194 0.200876 0.2 5.53319 8.04363e−015 0.2 4.74779 −3.65861e−015
5.85113 0.207187 0.2 6.31858 −7.46456e−016 0.2 5.53319 8.04363e−015

10 12.2438 0.22176 0.2 12.7028 1.66533e−015 0.2 11.7764 1.11022e−016
13.179 0.21162 0.2 13.6398 2.44249e−015 0.2 12.7028 1.66533e−015

14.1643 0.216723 0.2 14.7318 6.99441e−015 0.2 13.6398 2.44249e−015
15.0633 0.221103 0.2 15.3878 8.65974e−015 0.2 14.7318 6.99441e−015

16.0141 0.210649 0.2 16.6224 −1.02141e−014 0.2 15.3878 8.65974e−015
16.9904 0.218488 0.2 17.3735 −1.18794e−014 0.2 16.6224 −1.02141e−014
17.885 0.219978 0.2 18.3692 4.21885e−015 0.2 17.3735 7.77156e−015

18.8495 0.210323 0.2 19.3297 2.78666e−014 0.2 18.3692 4.21885e−015

11 −9.03744 0.102605 0.1 −8.79418 −1.02141e−014 0.1 −9.29755 −2.35367e−014
−8.54977 0.100094 0.1 −8.33823 3.55271e−015 0.1 −8.79418 −1.02141e−014
−8.00868 0.101775 0.1 −7.73795 4.44089e−016 0.1 −8.33823 3.55271e−015
−7.39728 0.100627 0.1 −7.06931 −3.61933e−014 0.1 −7.73795 4.44089e−016
−6.77458 0.100028 0.1 −6.42988 −2.66454e−015 0.1 −7.06931 −3.61933e−014
−6.20297 0.102166 0.1 −5.93072 1.02141e−014 0.1 −6.42988 −2.66454e−015

−5.70624 0.101291 0.1 −5.4615 −1.19904e−014 0.1 −5.93072 1.02141e−014

12 0.62006 0.231592 0.2 0.925759 −1.11022e−016 0.2 0.369959 2.22045e−016
1.41124 0.207872 0.2 1.88437 0 0.2 0.925759 1.11022e−016
2.26149 0.260227 0.1 2.59313 4.44089e−016 0.2 1.88437 0

13 −8.08035 0.216855 0.2 −7.81858 4.79548e−015 0.2 −8.53982 6.58544e−016
−7.40995 0.202454 0.2 −7.03319 −4.67072e−015 0.2 −7.81858 4.79548e−015
−6.72004 0.212611 0.2 −6.24779 1.85789e−015 0.2 −7.03319 −4.67072e−015
−6.14385 0.214841 0.2 −6.02655 −7.90844e−016 0.2 −6.24779 1.85789e−015
−5.72898 0.208749 0.2 −5.46239 −1.98916e−015 0.2 −6.02655 −7.90844e−016

14 0 0.5 0 1 0 0 −1 0

15 −1 0.5 0 1 0 0 −3 0

16 −0.66667 0.5 0 −1.68131e−0162 0 0 −1 0

17 0.2704 0.322013 0.1 0.614543 0 0.1 0 0
0.94168 0.308503 0.1 1.2004 0 0.1 0.614543 0
1.75767 0.156304 0.1 2.023 −4.44089e−016 0.1 1.2004 0

18 −2 0.125 0 −1.5412 0 0 −2.30656 0
−1 0.25 0 −0.458804 0 0 −1.5412 0

0 0.125 0 0.306563 0 0 −0.458804 0

19 −1 0.333333 0.2 0 0 0.2 −1.73205 −8.88178e−016
1 0.333333 0.2 1.73205 8.88178e−016 0.2 0 0

20 −3.80252 0.300101 0.3 −1.59114 0 0.3 −4.62113 −8.2423e−013

3.80252 0.300101 0.3 4.62113 −8.2423e−013 0.3 1.59114 0
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