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Abstract The problem of unsteady laminar, incompressible, electrically conducting mi-

cropolar fluid between inclined channel of rectangular cross-section was studied. It is
assumed the flow is under the influence of transverse magnetic field and the walls of the

channel have constant temperatures and finite conductivity. The numerical solutions was
obtained for the velocity, magnetic field profile, microrotation and temperature fields for

various parametric conditions. These results are illustrated graphically to illustrate the
effects of the physical parameters governing the flow. It is found that velocity, magnetic

field profile and microrotations promote the motion of the fluid with increase the wall con-
ductance. It is also found that both velocity and magnetic field decreases with magnetic

parameter increases.
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tance.
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1 Introduction

The study of flow through channels with applied magnetic field and heat transfer is receiving
considerable interest in the literature because of its wide applicabilities. Among many appli-
cations: solar technology, safety aspects of gas cooled reactors, accelerators and crystal growth
in liquids, etc can be mentioned. The study of Couette flow in a channel of an electrically
conducting fluid under the action of a transversely applied magnetic field has some important
applications in transpiration cooling in turbojet and rocket engines, like combustion chamber
walls, exhaust nozzles and gas turbine blades.

Remarkable attempts have been made to study the influence of MHD on various flow ge-
ometries. Flow between two inclined planes with/ without considering Magnetohydrodynamics
(MHD) effect studied by different researchers. Malashetty and Umavathi [1] and Malashetty et

al. [2] studied MHD two-fluid flow models in an inclined channels. Sanyal and Sanyal [3] ana-
lyzed the hydromagnetic slip flow with heat transfer in an inclined channel. Aiyesimi et al. [4]
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studied the combine effects of magnetic field on the MHD flow of a third grade fluid through
inclined channel in the presence of a uniform magnetic field by considering heat transfer. The
mixed convection heat transfer in an open ended inclined channels with reversal was studied
by Rheault and Bilgen [5]. The Soret effects due to natural convection between heated inclined
plates with magnetic field was analyzed by Raju et al. [6]. Daniel and Daniel [7] studied con-
vective flow of two immiscible fluids and heat transfer with porous along an inclined channel
with pressure gradient. The fully developed mixed convection flow between inclined infinite
parallel porous plates filled with porous medium was discussed by Cimpean [8]. Chang and
Lundgren [9] considered the effects of perfectly conducting walls on the flow in a rectangular
duct. Roy and DAS [10] examine the effects of wall conduction for MHD flow with heat transfer
in and inclined plane.

A micropolar fluid is the fluid with internal structures in which coupling between the spin
of each particle and the macroscopic velocity field is taken into account. The classical theo-
ries of continuum mechanics are inadequate to explain the microscopic manifestations of such
complex hydrodynamic behavior. The heat transfer in micropolar fluids is also important in
various applications. The theory of micropolar fluid formulated by Eringen [11] can be used to
analyze the behavior of many of the fluids involved in technical processes and engineering ap-
plications, polymers, flows of exotic lubricants, animal bloods and real fluids with suspensions.
An excellent review of micropolar fluids and their applications was given by Ariman et al. [12].

In this problem magnetohydrodynamic unsteady heat transfer flow of microplar fluid be-
tween inclined channels taking into account the induced magnetic field and moving wall con-
ductance is considered. The resulting governing equations are solved numerically for non-
dimensional velocity, magnetic field, microrotation and temperature profiles presented for values
of the parameters characterizing the flow.

2 Mathematical Formulation of the Problem

Let us consider an unsteady incompressible and electrically conducting micropolar fluid through
an incline channel with inclination α flows in porous channels rectangular cross-section with
the thickness of lower plate h1 and that of the upper plate is h2. The distance between the
porous walls is considered d. Assume a uniform magnetic field strength B0 is applied along the
y-axis. It is assumed also fluid injected in one of the wall and an equal rate suction in the other,
the constant temperature, conductivity and magnetic permeability of the lower plate is of T1,
σ1 and µ1 respectively and for the upper plate T2, σ2 and µ2. Let conductivity and magnetic
permeability of the fluid be σ3 and µ3 respectively. The flow is assumed unidirectional and fully
developed, the Boussinesq approximation is employed for the density variation, and driven by
the constant pressure gradient (− ∂p

∂x
) further the upper plate moves with a constant velocity

U0 while the lower plate is kept stationary.
Within the framework of the above-noted assumptions, the appropriate conservation equa-

tions can be described following Roy [10] and Sutton [13] as
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∂2u
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∂y
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Initial conditions:

u(y, 0) = B(y, 0) = Γ(y, 0) = T (y, 0) = 0. (5)

The boundary conditions:

u(0, t) = Γ(0, t) = φ1B(0, t) +
∂B

∂y
(0, t) = 0, T (0, t) = T1, t > 0,

u(h, t) = U0, Γ(h, t) = φ2B(h, t) +
∂B

∂y
(0, t) = 0, T (h, t) = T2, t > 0. (6)

where φ1 = σ3µ3

σ2µ2

, φ2 = σ3µ3

σ1µ1

, ρ is density, u is fluid velocity, B is magnetic field, Γ is microro-
tation, µ is the dynamic viscosity, κ is the gyroviscosity, j is the microinertia, kf is the thermal
conductivity of the substance, γ is material constant and Cp is the specific heat.

Introduce the non dimensional variables through

û =
u

U0

, Γ̂ =
Γd

U0

, B̂ =
B

U0

,

θ =
T − T1

T2 − T1

, t̂ =
tU0

d
, ŷ =

y

d
. (7)

Substituting equation (7) into equations (1-4), after dropping the hat we get the following
non-dimensional equations

1
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where
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C =
κ

µ + κ
(coupling number),

Re =
ρU0d

µ
(Reynolds number),

Gr =
d3gβ(T1 − T2)

υ2
(Grashof number),

S =
B2

0

ρµ0U
2

0

(magnetic force number),

P =
∂p

∂x

d

ρU2

0

(nondimensional pressure gradient),

R =
ρv0d

µ
(suction parameter),

Rm = µ0σdU0 (magnetic Reynolds number),

M =
d2κ(2µ + κ)

γ(µ + κ)
(micropolar parameter),

aj =
j

d2
(micro-inertia density parameter),

Pr =
µCp

kf

(Prandtl number),

Ec =
µ2

ρ2Cpd2(T2 − T1)
(Eckert number).

Initial conditions:

u(y, 0) = B(y, 0) = Γ(y, 0) = θ(y, 0) = 0. (12)

The boundary conditions:

u(0, t) = 1, Γ(0, t) = 0, φ1B(0, t) +
∂B

∂y
(0, t) = 0, θ(0, t) = 1, t > 0,

u(1, t) = 0, Γ(1, t) = 0, φ2B(1, t) +
∂B

∂y
(1, t) = 0, θ(1, t) = 0, t > 0. (13)

3 Results and Discussion

The non linear equations (8)- (11) together with the initial and boundary conditions (12) and
(13) are solved numerically using Matlab pdepe. Since the problem involves many parameters,
the parameters Pr = 0.01, Re = 1, R = −2.0, Ec = 0.02, Rm = 0.5, C = 0.5, α = 300, Gr =
1.0, M = 3, aj = 0.1 are fixed to analysis the effects of the other parameters on velocity,
magnetic field, microrotation and the temperature. Figure 1 shows the profile of velocity u,
magnetic field B, microrotations Γ and the temperature distribution θ for φ1 = −1.0, φ2 =
100, S = 5. The microrotation show the symmetric effect (Eringen [11]).

Figure 2(a) presented the effects of φ2 on velocity for φ1 = −2.0. It is seen that velocity
increases with increase in φ2. Similar result is shown for velocity in Figure 2(b) for φ1 = −1.0.
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Figure 1: The Profile of Velocity(u), Magnetic Field (B), Microrotation (Γ), Temperature (θ)
for φ1 = −1, φ2 = 100, S = 5.

Comparing Figure 2(a) and Figure 2(b) it is seen that for fixed φ2 the velocity increase with
decrease in φ1. Increasing the values of φ2 increases the effect of the magnetic field for fixed
value of φ1 = −1 as seen in Figure 2(c), similar effect is observed when φ1 = −2 from Figure
2(d). It can be seen from Figure 2(c) and Figure 2(d) when φ2 is fixed the magnetic filed
decreases with increase in φ1.

The effect of φ2 on microrotation is depicted in Figure 3(a) for φ1 = −2. Microrotation in
magnitude increase with increase in φ2 for φ1 = −2. Similar result is seen in Figure 3(b) for
φ1 = −1. In both figures the microrotaion symmetric effect is seen at the center (Eringen [11]).
The effect of the magnetic force number, S, is shown in Figure 4(a) and Figure 4(b). Increasing
the magnetic force number decreases the velocity as depicted in Figure 4(a). The magnetic field
decrease with the increase in the magnetic force number towards the lower plate and similar
effect is seen in magnitude for B towards the other end.

4 Conclusion

This article provides MHD effect on micropolar fluid flow between inclined moving plates taking
into account the induced magnetic field between inclined plates of permeable and conducting
walls. The flow characteristics are studied for velocity, magnetic field, microrotaions and tem-
perature. The effect of wall parameters (φ1, φ2) on velocity, magnetic field and micro rotation
studied and it is found that both velocity and magnetic field increases with increase in these
parameters. It is also observed a similar effect in magnitude on microrotaion. Velocity de-
creases with magnetic force number increases. The magnetic field, B, decreases in magnitude
with increase in magnetic force number.
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(a) (b)

(c) (d)

Figure 2: Effect of φ2 on Velocity (a) for φ1 = −2, (b) for φ1 = −1 on Magnetic Field (c) for
φ1 = −2, (d) for φ1 = −1 for S = 5.

(a) (b)

Figure 3: Effect of φ2 on Microrotation (a) with φ1 = −2, (b) with φ1 = −1 for S = 5.
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(a) (b)

Figure 4: Effect of Magnetic Force Number, S, on Velocity (a), Magnetic Field (b) for φ1 = −1
and φ2 = −2.
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