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Abstract In this paper, we study the numerical method for solving second order Fuzzy
Differential Equations (FDEs) using Block Backward Differential Formulas (BBDF)
under generalized concept of higher-order fuzzy differentiability. Implementation of
the method using Newton iteration is discussed. Numerical results obtained by BBDF
are presented and compared with Backward Differential Formulas (BDF) and exact
solutions. Several numerical examples are provided to illustrate our methods.
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1 Introduction

The study of FDEs has been the interest of many researchers in recent years due to the
suitability in modeling of real world problem for processing vague and subjective informa-
tion. The concept of a fuzzy derivative was first introduced by Chang and Zadeh [1]. It
was followed by Dubois and Prade [2], who used the extension principle in their approach.
The first approach to solve FDEs is based on Zadeh’s extension principle. In this approach
the associated crisp second-order problem is solved in the obtained solution, the boundary
values are substituted instead of the real constant. Another approach has been proposed
by Puri and Ralescu [3], they generalized and extended the concept of Hukuhara differen-
tiability (H-derivative) from set-valued mappings to the class of fuzzy mappings. Then,
fuzzy differential equation and initial value problems were extensively studied by Kaleva [4,
5] and by Seikkala [6]. A variety of exact, approximate and purely numerical methods are
available to find the solution of a fuzzy initial value problem (FIVP). Some authors of the
research papers have pursued methods based on the generalized derivative. Hence, we use
this generalized derivative concept in the present paper.

In the last few years, second-order fuzzy differential equations [7-12] have been studied.
There is a few investigations with different numerical methods have been devoted to the
numerical solution of second-order fuzzy differential equations. In the paper [10] of Allahvi-
ranloo et al., the authors obtained the approximate solution of nth-order linear differential
equations with fuzzy initial conditions by using the collocation method. Wang and Guo
have developed numerical methods for addressing second-order fuzzy differential equation
by Adomian decomposition method [11]. Meanwhile Rabiei et al. have developed the Fuzzy
Improved Runge-Kutta Nystrom (FIRKN) method for solving second-order fuzzy differen-
tial equations [12]. In this paper, we want to propose block backward differentiation formula
method for solving these equations. Therefore, this process would be developed through
four sections.
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The paper is organized as follows. In Section 2, we give some basic definitions and
theorem on FDEs. In Section 3, we show how Fuzzy version of BBDF is constructed. In
Section 4, the numerical examples are provided to illustrate the validity and applicability
of the method. Finally, some conclusions are given.

2 Preliminaries

We introduce the necessary notation and give some definitions which will be used throughout
the paper; see [13-15].

We consider all real numbers R. A fuzzy number is a mapping u : R → [0, 1] with the
following properties:

(a) u is normal, there exists an x0 ∈ R for which u(x0) = 1,
(b) u is upper semi-continuous,
(c) u is fuzzy convex, i.e., u(αx+ (1 − α)y) ≥ minu (x) , u(y)} for all x, y ∈ R, α ∈ [0, 1],
(d) supp u = {x ∈ R|u(x) > 0} is the support of the u, and its closure cl(supp u) is

compact.

Definition 1 An arbitrary fuzzy number u in the parametric form is represented by an
ordered pair of functions (uu) which satisfy the following requirements:

(i) u : α → ūα ∈ R is a bounded left-continuous non decreasing function over [0, 1],
(ii) u : α → uα ∈ R is a bounded left-continuous non increasing function over [0, 1],
(iii) uα ≤ uα, 0 ≤ α ≤ 1.

Let D : E × E → R
+ ∪ {0} be defined by D (u, v) = d ([u]α, [v]α) where d is the Hausdorff

metric defined in (P (R), d). Then D is a metric on E. Further, (E, D) is a complete metric
space has the following properties:

(i) D (u ⊕ w, v ⊕ w) = D (u, v) , for all u, v, w ∈ E,
(ii) D (k � u, k � v) = |k|D (u, v) , for all k ∈ R, u, v ∈ E,
(iii) D (u ⊕ v, w ⊕ e) ≤ D (u, w) + D (v, e) for all u, v, w, e ∈ E,
(iv) (D, E) is a complete metric space.

Definition 2 Consider x, y ∈ R. If there exist z ∈ R such that x = y 	 z, then z is called
the H-difference of x and y and it is denoted by x 	 y.

In this paper, the sign “	” always stands for H-difference and note that x	y 6= x+(−y).

Definition 3 Let F : I → R. For t0 ∈ I, we say F is differentiable at t0, if there exists an
element f ′(t0) ∈ R such that either

(i) for all h > 0 sufficiently small, ∃f (t0 + h)	 f (t0) , ∃f (t0)	 f (t0 − h) and the limits
(in the metric d)

f (t0 + h) 	 f (t0)

h
=

f (t0) 	 f (t0 − h)

h
= f

′

(t0) , (1)

(ii) for all h > 0 sufficiently small, ∃f (t0)	 f (t0 + h) , ∃f (t0 − h)	 f (t0) and the limits
(in the metric d)

f (t0) 	 f (t0 + h)

−h
=

f (t0 − h) 	 f
(

t0 = f
′

(t0)
)

−h
, (2)
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(iii) for all h > 0 sufficiently small, ∃f (t0 + h)	 f (t0) , ∃f (t0 − h)	 f (t0) and the limits
(in the metric d)

f (t0 + h) 	 f (t0)

h
=

f (t0 − h) 	 f
(

t0 = f
′

(t0)
)

−h
, (3)

(iv) for all h > 0 sufficiently small, ∃f (t0)	 f (t0 + h) , ∃f (t0)	 f (t0 − h) and the limits
(in the metric d)

f (t0) 	 f (t0 + h)

−h
=

f (t0) 	 f
(

t0 − h = f
′

(t0)
)

h
. (4)

The fuzzy set f (t0) is called the hukuhara derivative of f at t0.

In [16], the authors consider four cases for derivatives. Here we only consider the two
first cases of Definition 3. In the other cases, the derivative is trivial because it is reduced
to a crisp element. We say f is (1)–differentiable on (a, b) if f is differentiable with the
meaning (i) of Definition 3 and also (2) – differentiable that f satisfies in the Definition 4
case (ii).

Theorem 1 [17] Let f : (a, b) → E be a function and denote [F (t)]r = [fr (t) , gr (t)] , for
each r ∈ [0, 1]. Then

(i) if f is (1) – differentiable, then fr (t) and gr (t) are differentiable functions and

[F ′ (t)]
r

= [f ′

r (t) , g′r (t)] , (5)

(ii) if fis (2) – differentiable, then fr (t) and gr (t) are differentiable functions and

[F ′ (t)]
r

=
[

g′r (t) , f ′

r (t)
]

. (6)

Consider the second-order fuzzy initial value problem:
{

y′′ = f (t, y, y′) , t ∈ [t0, T ]

y (t0) = y0, y
′ (0) = y′0,

(7)

where f is a fuzzy function with r-level sets of initial values

[y′0]r = [y′1 (0; r) , y′2 (0; r)] , r ∈ [0, 1] .

We write

y (t, y) = [y1 (t; r) , y2 (t; r)] , y
′

(t, y) =
[

y
′

1 (t; r) , y
′

2 (t; r)
]

and f (t, y) = [f1 (t, y) , f2 (t, y)] ,

where
f1 (t, y) = F [t, y1 (t; r) , y2 (t; r)] ,

f2 (t, y) = G [t, y1 (t; r) , y2 (t; r)] .
(8)

By using the extension principle, when y (t) is a fuzzy number we have the membership
function

f (t, y (t)) (s) = sup {y (t) (τ ) |s = f(t, τ )} , s ∈ R.
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It follows that
[f (t, y)]

r
= [f1 (t, y; r) , f2 (t, y; r)] , r ∈ [0, 1] ,

where
f1 (t, y; r) = min{f (t, u) |u ∈ [y1 (r) , y2 (r)]} ,

f2 (t, y; r) = max{f (t, u) |u ∈ [y1 (r) , y2 (r)]} .
(9)

Definition 4 [18] Let f : (t0, T ) × E → E and t0 ∈ (t0, T ) .We say that f is strongly
generalized differentiable of the second order at t0, if there exists an element f

′′

(t0) ∈ E,such
that

(i) for all h > 0 sufficiently small, ∃f
′

(t0 + h) 	 f
′

(t0) , ∃f
′

(t0) 	 f ′ (t0 − h) and the
limits (in the metric D)

f ′ (t0 + h) 	 f ′ (t0)

h
=

f ′ (t0) 	 f ′ (t0 − h)

h
(10)

= f
′′

(t0)

or (ii) for all h > 0 sufficiently small, ∃f
′

(t0) 	 f
′

(t0 + h) , ∃f ′ (t0 − h) 	 f
′

(t0) and the
limits (in the metric D)

f ′ (t0) 	 f ′ (t0 + h)

−h
=

f ′ (t0 − h) 	 f ′ (t0)

−h
= f ′′ (t0) (11)

or (iii) for all h > 0 sufficiently small, ∃f
′

(t0 + h) 	 f
′

(t0) , ∃f ′ (t0 − h) 	 f
′

(t0) and the
limits (in the metric D)

f ′ (t0 + h) 	 f ′ (t0)

h
=

f ′ (t0 − h) 	 f ′ (t0)

−h
= f ′′ (t0) (12)

or (iv) for all h > 0 sufficiently small, ∃f
′

(t0) 	 f
′

(t0 + h) , ∃f ′ (t0) 	 f
′

(t0 − h) and the
limits (in the metric D)

f ′ (t0) 	 f (t0 + h)

−h
=

f ′ (t0) 	 f (t0 − h)

h
= f ′′ (t0) . (13)

For a supposed fuzzy function f , one has two possibilities, according to definitions 3 and 4,
to obtain the derivative of f over t : f (t) and f (t) . Then for each of these two derivatives,
one has again two possibilities:

D
(1)
1

(

D
(1)
1 f (t) , D

(1)
2 f (t)

)

and D
(1)
1

(

D
(1)
2 f (t)

)

, D
(1)
2

(

D
(1)
2 f (t)

)

,

respectively.

3 Review the formulation of block backward differentiation formu-
las method

In this paper, we review the formulation of BBDF proposed by Ibrahim [19, 20]. The
BBDF is modified into a fuzzy version form to solve the second order FDEs in the form
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of equation in (7). To derive the formula of BBDF, Lagrange interpolating polynomial
Pk(x) is used to interpolate the values yn, yn−1, . . . , yn−k+1 at the interpolation points xn,
xn−1, . . . , xn−k+1, in term of a Lagrange polynomial was defined as follows,

Pk (x) =

k
∑

j=0

Lk,j(x)y(xn+1−j),

where

Lk,j (x) =

k
∏

i = 0
i 6= j

(x − xn+1−i)

(xn+1−j − xn+1−i)
, for each j = 0, 1, . . . , k. (14)

In order to obtain the equations, the backvalues of yn+2−i, i = 0, 1, . . . , 4, are used to
interpolate the Lagrange polynomial. From the equation in (7), [t0, tn] is divided into five
points xn−2, xn−1, xn, xn+1, xn+2. Let h is the constant step size, the equation obtains from
the Lagrange polynomial are as below,

P (x) =
(x − xn−2) (x − xn−1) (x − xn) (x − xn+1)

(xn+2 − xn−2) (xn+2 − xn−1) (xn+2 − xn) (xn+2 − xn+1)
y (xn+2)

+
(x − xn−2) (x − xn−1) (x − xn) (x − xn+2)

(xn+1 − xn−2) (xn+1 − xn−1) (xn+1 − xn) (xn+1 − xn+2)
y (xn+1)

+
(x − xn−2) (x − xn−1) (x − xn+1) (x − xn+2)

(xn − xn−2) (xn − xn−1) (xn − xn+1) (xn − xn+2)
y (xn)

+
(x − xn−2) (x − xn) (x − xn+1) (x − xn+2)

(xn−1 − xn−2) (xn−1 − xn) (xn−1 − xn+1) (xn−1 − xn+2)
y (xn−1)

+
(x − xn−1) (x − xn) (x − xn+1) (x − xn+2)

(xn−2 − xn−1) (xn−2 − xn) (xn−2 − xn+1) (xn−2 − xn+2)
y (xn−1) . (15)

Substituting

s =
x − xn+1

h
⇒ x = xn+1 + sh

into Equation (15), then differentiate once at x = xn+1 with respect to s and substitute
s = 0 gives

y′n+1 =
1

h

(

−
1

12
yn−2 +

1

2
yn−1 −

3

2
yn +

5

6
yn+1 +

1

4
yn+2

)

. (16)

Similarly, differentiating Equation (15) once at x = xn+2 and substitutings = 1, gives

y′n+2 =
1

h

(

1

4
yn−2 −

4

3
yn−1 + 3yn − 4yn+1 +

25

12
yn+2

)

. (17)

Then, differentiate twice the interpolating polynomial in Equation (15), evaluate at x =
xn+2 and substitute s = 0 gives

yn+1 = −
1

20
yn−2 +

1

5
yn−1 +

3

10
yn +

11

20
yn+2 −

3

5
h2fn+1. (18)
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Differentiate twice the interpolating polynomial in (15) at x = xn+2 and substitute s = 1
gives the formula for second point,

yn+2 = −
11

35
yn−2 +

8

5
?6n−1 −

114

35
yn +

104

35
yn+1 +

12

35
h2fn+2. (19)

4 Implementation of block backward differentiation formulas (BBDF)
in fuzzy version

In this section, the BBDF formula is modified into a fuzzy version of BBDF (FBBDF)
to suit for the second order FDEs problem. Consider the second-order fuzzy initial value
problem in the Equation (7). Let Y (t; r) =

[

Y (t; r), Y (t; r)
]

be the exact solution and

y (t; r) =
[

y(t; r), y(t; r)
]

be the approximate solution where r ∈ [0, 1] and t ∈ [0, T ].
Equation (16-19) is modified into FBBDF and gives the following



























y′
n+1

= 1
h

(

− 1
12

y
n−2

+ 1
2
y

n−1
− 3

2
y

n
+ 5

6
y

n+1
+ 1

4
y

n+2

)

y
n+1

= − 1
20

y
n−2

+ 1
5
y

n−1
+ 3

10
y

n
+ 11

20
y

n+2
− 3

5
h2f

n+1

[

t, y (t, r) , y (t, r)
]

y′

n+2
= 1

h

(

1
4y

n−2
− 4

3y
n−1

+ 3y
n
− 4y

n+1
+ 25

12y
n+2

)

y
n+2

= −11
35y

n−2
+ 8

5y
n−1

− 114
35 y

n
+ 104

35 y
n+1

+ 12
35h2f

n+2

[

t, y (t, r) , y (t, r)
]

(20)























y′

n+1 = 1
h

(

− 1
12yn−2 + 1

2yn−1 −
3
2yn + 5

6yn+1 + 1
4yn+2

)

yn+1 = − 1
20

yn−2 + 1
5
yn−1 + 3

10
yn + 11

20
yn+2 −

3
5
h2fn+1

[

t, y (t, r) , y (t, r)
]

y′

n+2 = 1
h

(

1
4yn−2 −

4
3yn−1 + 3yn − 4yn+1 + 25

12yn+2

)

yn+2 = −11
35yn−2 + 8

5yn−1 −
114
35 yn + 104

35 yn+1 + 12
35h2fn+2

[

t, y (t, r) , y (t, r)
]

(21)

The following computations are carried out to obtain the approximations:

(i) Compute Y
(i)
n+1,n+2 and Y ′(i)

n+1,n+2 using the predictor formula.

(ii) Solved E
(i+1)
n+1,n+2 and followed by E′(i+1)

n+1,n+2 for the corresponding linear system.

(iii) Computed the corrected value of Y
(i)

n+1,n+2 and Y ′(i)
n+1,n+2 with E

(i+1)
n+1,n+2 and E′(i+1)

n+1,n+2

respectively.
The notation E is the error bound for the newton iteration.

5 Numerical examples and discussion

In this section, we solved the fuzzy initial value problems to show the accuracy of the
proposed methods. The results of the exact and the approximate solutions are illustrated
in the tables and figures. A comparison between the approximate solutions and the exact
solutions is carried out to obtain the errors.

Let the exact solution be Y (t; r) =
[

Y (t; r), Y (t; r)
]

. The absolute error formula, con-
sidered in Table 1-2, is as follows:

The error, ε is defined as the maximum error through the whole interval of integration.
Maximum Error = ε,

ε =
∣

∣y − Y
∣

∣ , ε =
∣

∣y − Y
∣

∣ .



Block backward differentiation formulas for solving fuzzy differential equations 221

The notation used in the tables and figures take the following meaning:

h : Step size

r : Fuzzy numbers with fuzzy bounded r-level interval

Y : Lower bounded exact solution

Y : Upper bounded exact solution

y : Lower bounded approximate solution

y : Upper bounded approximate solution,

Example 1 Consider the following fuzzy linear initial value problem.

y”(t) = −y(t), t ≥ 0,

y (0) = 0, y′(0) = [0.9 + 0.1r, 1.1− 0.1r] .

The exact solution at t = 1 using (1)-differentiability is given by:

Y (t; r) = [(0.9 + 0.1r) sin (t) (1.1− 0.r) sin (t)]

Source: Allahviranloo et al. [9]

Table 1: Error at t = 1 in solving problem 1

BDF BBDF

h r ε ε ε ε

0 3.09591e-05 3.78389e-05 5.40487e-05 6.60595e-05

0.2 3.16471e-05 3.71510e-05 5.52498e-05 6.48584e-05

10−1 0.4 3.23351e-05 3.64630e-05 5.64509e-05 6.36573e-05

0.6 3.30231e-05 3.57750e-05 5.76519e-05 6.24563e-05

0.8 3.37111e-05 3.50870e-05 5.88530e-05 6.12552e-05

1.0 3.43990e-05 3.43990e-05 6.00541e-05 6.00541e-05

Execution time 1.26s 0.6s

BDF BBDF

h r ε ε ε ε

0 3.14945e-08 3.84933e-08 6.85061e-08 8.37298e-08

0.2 3.21944e-08 3.77934e-08 7.00285e-08 8.22074e-08

10−2 0.4 3.28943e-08 3.70935e-08 7.15509e-08 8.06850e-08

0.6 3.35941e-08 3.63937e-08 7.30733e-08 7.91627e-08

0.8 3.42940e-08 3.56938e-08 7.45956e-08 7.76403e-08

1.0 3.49939e-08 3.49939e-08 7.61179e-08 7.61179e-08

Execution time 1.84s 0.9s
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Figure 1: The exact solutions and the approximate solutions in Table 1 with h = 0.1

Figure 2: Error of BDF and BBDF at r = 1 with different step sizes
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Example 2 Consider the initial problem

y ′′(t) = −y(t) + t, t ≥ 0

y ′ (0) = [1.8 + 0.2r, 2.2− 0.2r] .

Exact solution at t = 1 using (1)-differentiability is given by:

y1 (t; r) =

(

4

5
+

1

5
r

)

sin (t) +

(

9

10
+

1

10
r

)

cos (t) + t

y2 (t; r) =

(

6

5
−

1

5
r

)

sin (t) +

(

11

10
−

1

10
r

)

cos (t) + t.

Source: Rabiei et al. [23].

Table 2: Error at t = 1 in solving problem 2

BDF BBDF

h r ε ε ε ε

0 1.708944e-05 2.85313e-05 2.25608e-05 4.09196e-05

0.2 1.823363e-05 2.73871e-05 2.43967e-05 3.90838e-05

10−1 0.4 1.937782e-05 2.62430e-05 2.62326e-05 3.72479e-05

0.6 2.052201e-05 2.50988e-05 2.80684e-05 3.54120e-05

0.8 2.166619e-05 2.39546e-05 2.99043e-05 3.35761e-05

1.0 2.281038e-05 2.28104e-05 3.17402e-05 3.17402e-05

Execution time 1.47s 0.9s

BDF BBDF

h r ε ε ε ε

0 1.67951e-08 2.83038e-08 3.56459e-08 6.04823e-08

0.2 1.79460e-08 2.71529e-08 3.81297e-08 5.79987e-08

10−2 0.4 1.90969e-08 2.60021e-08 4.06131e-08 5.55149e-08

0.6 2.02477e-08 2.48512e-08 4.30966e-08 5.30309e-08

0.8 2.13986e-08 2.37003e-08 4.55803e-08 5.05478e-08

1.0 2.25495e-08 2.25495e-08 4.80643e-08 4.80643e-08

Execution time 2.59s 0.12s

Both methods used in this session solve second order fuzzy differential equations directly
without reducing to a system of first order fuzzy differential equations. For problem 1-2, the
errors of BDF and BBDF compared with exact solution for y and y are given in Table 1-2.
Time taken for the methods to compute the numerical solution is also given in table 1-2.In
Table 1-2, we can see that the absolute errors for both methods are very small. Even though
the absolute errors obtained by BDF is slightly smaller than the absolute errors obatained
by BBDF at different step sizes. However, for the time taken to calculate the results (see
Table 1-2), the method proposed in this paper has significant advantages. It is clearly shown
that BBDF is almost as accurate as BDF but BBDF with low computation cost; hence, it
is computationally more effiecient. Figure 1 and Figure 3, show the approximate solutions
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Figure 3: The exact solutions and the approximate solutions in Table 2 with h = 0.1

Figure 4: Error of BDF and BBDF at r = 1 with different step sizes
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of BDF and BBDF are close to exact solution. Figure 2 and Figure 4, show the errors
obtained by BDF is smaller than BBDF at different step sizes. In general, BDF are slightly
outperform than BBDF in term of the accuracy of the results obtained, whereas BBDF is
better than the BDF in term of execution time at different step sizes.

6 Conclusion

In this study, we have presented a fuzzy version of block backward differentiation formulas
for the solutions of second-order Fuzzy Differential Equations under generalized differentia-
bility. We observe that the value of errors between exact and approximation gets smaller
when the step size h is reduced from 0.1 to 0.01 for both methods of BDF and BBDF.
After comparing the time taken by the methods, it seems the fuzzy version of block back-
ward differentiation formula is one of the efficient methods for solving second-order fuzzy
differential equations in term of the execution time.

The clear advantage of BBDF method is the low computation cost. This is because in
BBDF method, two solution i.e. y

n+1
and y

n+2
values are computed simultaneously as

discussed in earlier session. This again will lead to a quicker execution time. Therefore, we
can conclude that the BBDF method with high accuracy and less execution time compared
with the existing BDF method is more efficient for solving second order fuzzy differential
equations.

As a future work, we will extend numerical methods for solving second order stiff fuzzy
differential equations.
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