Fuzzy L-closed sets

Talal Al-Hawary
Yarmouk University
Department of Mathematics, Irbid-Jordan
e-mail: talalhawary@yahoo.com

Abstract Our goal in this paper is to introduce the relatively new notions of fuzzy L-closed and fuzzy L-generalized closed sets. Several properties and connections to other well-known weak and strong fuzzy closed sets are discussed. Fuzzy L-generalized continuous and fuzzy L-generalized irresolute functions and their basic properties and relations to other fuzzy continuities are explored.

Keywords Fuzzy L-open set; fuzzy L-closed set; fuzzy L-generalized closed set; fuzzy L-generalized continuous function.

AMS mathematics subject classification 54C08, 54H05.

1 Introduction

For a set X, a fuzzy set in X is a function $\lambda : X \to [0,1]$. Here $\lambda(x)$ represents the degree of membership of x in the fuzzy subset A of X and by χ_A, we mean the fuzzy set that maps every element in A to 1 and every element outside A to 0. Fuzzy topological spaces (simply, spaces) were first introduced by [1, 2]. A fuzzy topology on a set X is a collection T of subsets of X satisfying: $0, 1 \in T$, T is closed under formation of finite intersections and is closed under formation of arbitrary unions. Fuzzy topological spaces were studied by several authors, see for example [1, 3–8]. Let (X, \mathcal{T}) be a fuzzy topological space. If λ is a fuzzy set, then the closure of λ (the smallest fuzzy closed set containing λ) and the interior of λ (the largest fuzzy open set in λ) will be denoted by $\text{Cl}_T(\lambda)$ and $\text{Int}_T(\lambda)$, respectively. If no ambiguity appears, we use λ and $\bar{\lambda}$ instead, respectively. A fuzzy set λ is called fuzzy semiopen [6] if there exists a fuzzy open set μ such that $\mu \leq \lambda \leq \text{Cl}_T(\mu)$. Clearly λ is a fuzzy semiopen set if and only if $\lambda \leq \text{Cl}_T(\text{Int}_T(\lambda))$. A complement of a fuzzy semiopen set is called fuzzy semiclosed. The fuzzy semi-interior of λ is the union of all fuzzy semi-open subsets contained in λ and is denoted by $s\text{Int}(\lambda)$. λ is called fuzzy preopen if $\lambda \leq \text{Int}_T(\text{Cl}_T(\lambda))$. A complement of a fuzzy preopen set is called fuzzy semiclosed. Fuzzy generalization of λ is the union of all fuzzy semi-open subsets contained in λ and is denoted by $s\text{Int}(\lambda)$. λ is called fuzzy preopen if $\lambda \leq \text{Int}_T(\text{Cl}_T(\lambda))$. A complement of a fuzzy preopen set is called fuzzy semiclosed.

We introduce the relatively new notions of fuzzy L-closed sets, which is closely related to the class of fuzzy closed subsets. We show that the collection of all fuzzy L-open
subsets of a space \((X, \mathcal{T})\) forms a fuzzy topology that is finer than \(\mathcal{T}\) and we investigate several characterizations of fuzzy \(L\)-open and fuzzy \(L\)-closed notions via the operations of interior and closure. In section 3, we introduce the notion of fuzzy \(L\)-generalized closed sets and study connections to other weak and strong forms of fuzzy generalized closed sets. In addition several interesting properties and constructions of fuzzy \(L\)-generalized closed sets are discussed. Section 4 is devoted to introducing and studying fuzzy \(L\)-generalized continuous and fuzzy \(L\)-generalized irresolute functions and connections to other similar forms of fuzzy continuity.

2 Fuzzy \(L\)-closed sets

We begin this section by introducing the notions of fuzzy \(L\)-open and fuzzy \(L\)-closed subsets.

Definition 1 Let \(\mu\) be a fuzzy subset of a space \((X, \tau)\). The fuzzy \(L\)-interior of \(\mu\) is the union of all fuzzy subsets of \(X\) whose closures are contained in \(\text{Int}(\mu)\), and is denoted by \(\text{Int}_L(\mu)\). The fuzzy \(L\)-closure of \(\mu\) is \(\text{Cl}_L(\mu)\) is the smallest fuzzy closed set containing \(\mu\).

Clearly \(\text{Int}_L(\mu) \subseteq \text{Int}(\mu) \subseteq \mu\) and hence every fuzzy \(L\)-open set is fuzzy open and thus every fuzzy \(L\)-closed set is fuzzy closed, but the converses needs not be true.

Example 1 Let \(X = \{a, b, c\}\) and \(\tau = \{0, 1, \chi(a), \chi(b), \chi(a,b)\}\). Then \(\chi(a,c)\) is a fuzzy open set that is not a fuzzy \(L\)-open but \(\text{Int}_L(\chi(a,c)) = 0\).

Next, we show that the collection of all fuzzy \(L\)-open subsets of a space \((X, \tau)\) forms a fuzzy topology \(\tau_{FL}\) that is finer than \(\tau\).

Theorem 1 If \((X, \tau)\) is a fuzzy space, then \((X, \tau_{FL})\) is a fuzzy space such that \(\tau \supseteq \tau_{FL}\).

Proof We only need to show \((X, \tau_{FL})\) is a fuzzy space. Clearly 0 and 1 are fuzzy \(L\)-open sets. If \(\mu, \gamma \in \tau_{FL}\), then \(\mu = \text{Int}_L(\mu)\) and \(\gamma = \text{Int}_L(\gamma)\). Now \(\text{Int}_L(\mu \cap \gamma) = \text{Int}_L(\mu) \cap \text{Int}_L(\gamma) = \text{Int}(\mu \cap \gamma)\). Thus \(\text{Int}_L(\mu \cap \gamma) \supseteq \text{Int}_L(\mu) \land \text{Int}_L(\gamma)\), and so \(\mu \land \gamma \in \tau_{FL}\).

If \(\{\mu_\alpha : \alpha \in \Delta\}\) is a collection of fuzzy \(L\)-open subsets of \(X\), then for every \(\alpha \in \Delta\), \(\text{Int}_L(\mu_\alpha) = \mu_\alpha\). Hence

\[
\text{Int}_L(\bigvee_{\alpha \in \Delta} \mu_\alpha) = \bigvee\{\theta \in \tau : \text{Cl}(\theta) \subseteq \text{Int}_L(\bigvee_{\alpha \in \Delta} \mu_\alpha)\} \\
\supseteq \bigvee\{\theta \in \tau : \text{Cl}(\theta) \subseteq \bigvee_{\alpha \in \Delta} \text{Int}_L(\mu_\alpha)\} \\
\supseteq \bigvee\{\theta \in \tau : \text{Cl}(\theta) \subseteq \mu_\alpha\} \quad \text{for every } \alpha \in \Delta \\
= \text{Int}_L(\mu_\alpha) \quad \text{for every } \alpha \in \Delta \\
= \mu_\alpha \quad \text{for every } \alpha \in \Delta.
\]

Hence \(\bigvee_{\alpha \in \Delta} \mu_\alpha \subseteq \text{Int}_L(\bigvee_{\alpha \in \Delta} \mu_\alpha)\) and thus \(\bigvee_{\alpha \in \Delta} \mu_\alpha\) is fuzzy \(L\)-open.

In classical topology, a set is always contained in its closure, but this is not the case in \(\tau_{FL}\). Next we show that \(\mu \subseteq \text{Cl}(\mu)\) needs not be true.

Example 2 Let \(X = \{a, b, c, d\}\) and \(\tau = \{0, 1, \chi(a), \chi(a,b), \chi(c,d), \chi(a,c,d)\}\). Then \(\chi(c) \subseteq \chi(a,b,c)\), but \(\chi(c) \not\subseteq \text{Cl}_{FL}(\chi(a,b,c))\).
One might think that a fuzzy subset μ of a fuzzy space X is fuzzy L-closed if and only if $\mu = Cl_L(\mu)$, but this is not true as shown in the next example.

Example 3 Consider the space in Example 2 and consider $\mu = \chi_{\{b,c\}}$. Since $Cl(\chi_{\{a\}}) = \chi_{\{a,c\}}, \chi_{\{a\}} \notin Cl_L(\mu)$. Since $Cl_L(\mu) = \mu$, but μ is not a fuzzy L-open set.

Lemma 1 For any fuzzy set μ of a fuzzy space X,

(i) $Int(\mu) \leq Cl_L(\mu)$.

(ii) $Int(\mu) = 0$ if and only if $Cl_L(\mu) = 0$.

Proof

(i) $\lambda \notin Cl_L(\mu)$ implies that there exists a fuzzy open set θ containing λ such that $Cl(\theta) \land Int(\mu) = 0$. Hence $\lambda \notin Int(\mu)$.

(ii) If $\lambda \leq Cl_L(\mu)$, then for every fuzzy open subset θ containing λ, $Cl(\theta) \land Int(\mu) \neq 0$.

Hence there exists $\gamma \leq Cl(\theta) \land Int(\mu)$ and as $Int(\mu)$ is fuzzy open, $\theta \land Int(\mu) \neq 0$.

Therefore $Int(\mu) \neq 0$.

Conversely if $Cl_L(\mu) = 0$, then by (i) as $Int(\mu) \leq Cl_L(\mu)$, $Int(\mu) = 0$.

Lemma 2 The union of a fuzzy open set with a fuzzy L-open-set is fuzzy open.

Proof Let μ be an open set and η be a fuzzy L-open set. For all $\gamma \leq \mu \lor \eta$, $\gamma \leq \mu$ or $\gamma \leq \eta$ and so $\gamma \leq Int(\mu) \land Int(\eta)$ or $\gamma \leq Int_L(\mu) \land Int(\eta) \leq Int(\mu \lor \eta)$.

Corollary 1 The intersection of a fuzzy closed set with a fuzzy L-closed set is fuzzy closed.

Lemma 3 If λ is a fuzzy semiopen set of a fuzzy space X, $Cl_L(\mu) = Cl(\mu)$.

Proof If θ is a fuzzy open set containing λ such that $Cl(\theta) \land Int(\mu) \neq 0$, then there exists $\gamma \leq Cl(\theta) \land Int(\mu)$. Thus $\theta \land Int(\mu) \neq 0$ and so $\theta \land Int(\mu) \neq 0$. Therefore $Cl_L(\mu) \leq Cl(\mu)$.

Conversely if for every fuzzy open set θ containing μ we have $\theta \land \mu \neq 0$, $\theta \land Int(Cl(\mu)) \neq 0$, since μ is fuzzy semiopen. Thus there exists $\gamma \leq \theta \land Int(\mu)$ and so $\theta \land Int(\mu) \neq 0$ which implies that $Cl(\theta) \land Int(\mu) \neq 0$. Hence $Cl(\mu) \leq Cl_L(\mu)$.

Corollary 2

(i) For any fuzzy subset μ of X, $Cl_L(\mu) \leq Cl(\mu)$.

(ii) If μ is a fuzzy semiopen subset of a space X, then $\mu \leq Cl_L(\mu)$.

Lemma 4 If μ is a fuzzy L-closed set in a fuzzy space X, then $Cl_L(\mu) \leq \mu$.

Proof If μ is a fuzzy L-closed subset, then μ is fuzzy closed and thus by Corollary 2 (i), $Cl_L(\mu) \leq \mu$.

Next, we show that a fuzzy preclosed set that is also fuzzy semiopen equals its fuzzy L-closure.

Theorem 2 If μ is a fuzzy regular closed subset of a fuzzy space X, then $Cl_L(\mu) \leq \mu$.

Proof $Cl_L(\mu) \leq Cl(\mu) \leq Cl(Cl(Int(\mu))) = Cl(Int(\mu)) \leq \mu$. This together with Corollary 2 implies that $\mu = Cl_L(\mu)$.

□
3 Fuzzy L-generalized closed sets

In this section, we introduce the notion of fuzzy L-generalized closed set. Moreover, several interesting properties and constructions of these subsets are discussed.

Definition 2 A fuzzy subset μ of a fuzzy space X is called fuzzy L-generalized closed set if whenever θ is a fuzzy open subset containing μ, we have $\text{Cl}_L(\mu) \leq \theta$. μ is fuzzy L-generalized open if $1 - \mu$ is fuzzy L-generalized closed set.

Theorem 3 A subset μ of (X, τ) is fuzzy L-generalized open if and only if $\eta \leq \text{Int}_L(\mu)$, whenever $\eta \leq \mu$ and η is fuzzy closed in (X, τ).

Proof Let μ be a fuzzy L-generalized open set and η be a fuzzy closed subset such that $\eta \leq \mu$. Then $1 - \mu \leq 1 - \eta$. As $1 - \mu$ is fuzzy L-generalized closed set and as $1 - \eta$ is fuzzy open, $\text{Cl}_L(1 - \mu) \leq 1 - \eta$. So $\eta \leq 1 - \text{Cl}_L(1 - \mu) = \text{Int}_L(\mu)$.

Conversely if $1 - \mu \leq \theta$ where θ is fuzzy open, then the fuzzy closed set $1 - \theta \leq \mu$. Thus $1 - \theta \leq \text{Int}_L(\mu) = 1 - \text{Cl}_L(1 - \mu)$ and so $\text{Cl}_L(1 - \mu) \leq \theta$. \square

Next we show that every fuzzy L-closed set is fuzzy L-generalized closed. Moreover, the class of fuzzy generalized closed sets is properly placed between the classes of fuzzy semiopen sets that are fuzzy closed and fuzzy L-generalized closed sets. Clearly every fuzzy closed set that is fuzzy semiopen, by Lemma 1, is a fuzzy L-closed set. A fuzzy closed set is trivially fuzzy generalized closed and every fuzzy generalized closed set is fuzzy L-generalized closed by Corollary 2 (i).

The following result follows from Corollary 2 (i) and the fact that every fuzzy L-closed set is fuzzy L-closed:

Lemma 5 Every fuzzy L-closed set is fuzzy L-generalized closed.

The converse of the preceding result needs not be true.

Example 4 Let $X = \{a, b, c, d\}$ and $\tau = \{0, 1, \chi_{\{b\}}, \chi_{\{c\}}, \chi_{\{b,c\}}, \chi_{\{a,b\}}, \chi_{\{a,b,c\}}\}$. Then as $\text{Cl}_L(\chi_{\{a\}}) = 0, \chi_{\{a\}}$ is fuzzy L-generalized closed, but it is not fuzzy L-closed and not fuzzy generalized closed and hence not fuzzy closed. Also $\chi_{\{b,d\}}$ is an an fuzzy generalized closed set that is not fuzzy closed.

The following is an immediate result from Lemma 1:

Theorem 4 If μ is a fuzzy semiopen subset of a space X, the following are equivalent:

1. μ is fuzzy L-generalized closed;
2. μ is fuzzy generalized closed.

Its clear that if $\mu \leq \gamma$, then $\text{Int}_L(\mu) \leq \text{Int}_L(\gamma)$ and $\text{Cl}_L(\mu) \leq \text{Cl}_L(\gamma)$.

Lemma 6 If μ and γ are fuzzy sets in a fuzzy space X, then $\text{Cl}_L(\mu) \vee \text{Cl}_L(\gamma) = \text{Cl}_L(\mu \vee \gamma)$ and $\text{Cl}_L(\mu \wedge \gamma) \leq \text{Cl}_L(\mu) \wedge \text{Cl}_L(\gamma)$.

Proof Since μ and γ are subsets of $\mu \vee \gamma$, $\text{Cl}_L(\mu) \vee \text{Cl}_L(\gamma) \leq \text{Cl}_L(\mu \vee \gamma)$. On the other hand, if $\eta \leq \text{Cl}_L(\mu \vee \gamma)$ and θ is a fuzzy open set containing η, then $\text{Cl}(\theta) \wedge \text{Int}(\mu \vee \gamma) \neq 0$. Hence either $\text{Cl}(\theta) \wedge \text{Int}(\mu) \neq 0$ or $\text{Cl}(\theta) \wedge \text{Int}(\gamma) \neq 0$. Thus $\eta \leq \text{Cl}_L(\mu \vee \gamma)$. Finally since $\mu \wedge \gamma$ is a fuzzy subset of μ and γ, $\text{Cl}_L(\mu \wedge \gamma) \leq \text{Cl}_L(\mu) \wedge \text{Cl}_L(\gamma)$. \square

Corollary 3 Finite union of fuzzy L-generalized closed sets is fuzzy L-generalized closed.

While the finite intersection of fuzzy L-generalized closed sets needs not be fuzzy L-generalized closed.
Example 5 Let \(X = \{a, b, c, d, e\} \) and \(\tau = \{0, 1, \chi_{\{b\}}, \chi_{\{c\}}, \chi_{\{b, c\}}, \chi_{\{a, b\}}, \chi_{\{a, b, c\}}\} \). Then \(\lambda = \chi_{\{a, c, d\}} \) and \(\mu = \chi_{\{b, c, e\}} \) are fuzzy L-generalized closed sets since the only super fuzzy open set of both is 1. But \(\lambda \land \mu = \chi_{\{c\}} \) is not fuzzy L-generalized closed.

Theorem 5 The intersection of a fuzzy L-generalized closed set with a fuzzy L-closed set is fuzzy L-generalized closed.

Proof Let \(\mu \) be a fuzzy L-generalized closed set and \(\eta \) be a fuzzy L-closed set. Let \(\theta \) be a fuzzy open set containing \(\mu \land \eta \). Then \(\mu \leq \theta \lor 1 - \eta \). Since \(1 - \eta \) is fuzzy L-open, by Lemma 3, \(\theta \lor 1 - \eta \) is fuzzy open and since \(\mu \) is fuzzy L-generalized closed set, \(Cl_L(\mu \land \eta) \leq Cl_L(\mu) \land Cl_L(\eta) \) and by Lemma 6, \(Cl_L(\mu \land \eta) \leq Cl_L(\mu) \land Cl_L(\eta) \leq (\theta \lor 1 - \eta) \land \eta = \theta \land \eta \leq \theta \). □

4 Fuzzy L-generalized continuous and fuzzy L-generalized irresolute functions

Definition 3 A fuzzy function \(f : (X, \tau) \to (Y, \tau') \) is called
1. Fuzzy L-generalized continuous if \(f^{-1}(\lambda) \) is fuzzy L-generalized closed set in \((X, \tau) \) for every fuzzy closed set \(\lambda \) of \((Y, \tau') \).
2. Fuzzy L-generalized irresolute if \(f^{-1}(\lambda) \) is fuzzy L-generalized closed set in \((X, \tau) \) for every fuzzy L-generalized closed set \(\lambda \) of \((Y, \tau') \).

Lemma 7 Let \(f : (X, \tau) \to (Y, \tau') \) be a fuzzy generalized continuous. Then \(f \) is fuzzy L-generalized continuous, but not conversely.

Proof Follows from the fact that every fuzzy generalized closed set is fuzzy L-generalized closed. □

Example 6 Let \(X = \{a, b, c, d, e\} \) and \(\tau = \{0, 1, \chi_{\{b\}}, \chi_{\{c\}}, \chi_{\{b, c\}}, \chi_{\{a, b\}}, \chi_{\{a, b, c\}}\} \) and \(\tau' = \{0, 1, \chi_{\{d\}}\} \). Let \(f : (X, \tau) \to (X, \tau') \) be the identity function. Since \(f^{-1}(\chi_{\{a, b, c\}}) = \chi_{\{a, b, c\}} = Cl_L(\chi_{\{a, b, c\}}) \), \(f \) is fuzzy L-generalized continuous, but \(f \) is not fuzzy generalized continuous and hence not fuzzy continuous.

Even the composition of fuzzy L-generalized continuous functions needs not be fuzzy L-generalized continuous.

Example 7 Let \(f \) be the fuzzy function in Example 6 and \(g : (X, \tau') \to (X, \tau') \) be the identity function. It is easy to see that \(g \) is also a fuzzy L-generalized continuous function, but \(g \circ f \) is not fuzzy L-generalized continuous as \(\chi_{\{c\}} \) is fuzzy closed in \((X, \tau') \), but not fuzzy L-generalized continuous in \((X, \tau) \).

Corollary 4 If \(f : (X, \tau) \to (Y, \tau') \) is a fuzzy continuous and fuzzy contra-semi-continuous, then \(f \) is fuzzy L-generalized continuous.

Proof If \(\lambda \) is a fuzzy closed subset of \(Y \), then as \(f \circ \lambda \) is fuzzy continuous \(f^{-1}(\lambda) \) is fuzzy closed and as \(f \) is fuzzy contra-semi-continuous, \(f^{-1}(\lambda) \) is fuzzy semiopen. Thus \(f^{-1}(\lambda) \) is fuzzy L-generalized closed set.

We end this section by giving a necessary condition for a fuzzy L-generalized irresolute function to be fuzzy L-generalized continuous.

Theorem 6 If \(f : (X, \tau) \to (Y, \tau') \) is bijective, fuzzy open and fuzzy L-generalized irresolute, then \(f \) is fuzzy L-generalized closed.
Proof Let \(\lambda \) be a fuzzy closed subset of \(Y \) and let \(f^{-1}(\lambda) \leq \gamma \), where \(\gamma \in \tau \). Clearly, \(\lambda \leq f(\gamma) \). Since \(f(\gamma) \in \tau' \) and since \(\lambda \) is fuzzy \(L \)-generalized closed set, \(Cl_L(\lambda) \leq f(\gamma) \) and thus \(f^{-1}(Cl_L(\lambda)) \leq \gamma \). Since \(f \) is fuzzy \(L \)-generalized irresolute and since \(Cl_L(\lambda) \) is fuzzy \(L \)-generalized closed set in \(Y \), \(f^{-1}(Cl_L(\lambda)) \) is fuzzy \(L \)-generalized closed set. \(f^{-1}(Cl_L(\lambda)) \leq Cl_L(f^{-1}(Cl_L(\lambda))) = f^{-1}(Cl_L(\lambda)) \leq \gamma \). Therefore, \(f^{-1}(\lambda) \) is fuzzy \(L \)-generalized closed set and hence, \(f \) is fuzzy \(L \)-generalized continuous.

Acknowledgements

The authors would like to thank the referees for useful comments and suggestions.

References