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Abstract Our goal in this paper is to introduce the relatively new notions of fuzzy
L—closed and fuzzy L-generalized closed sets. Several properties and connections to
other well-known weak and strong fuzzy closed sets are discussed. Fuzzy L-generalized
continuous and fuzzy L-generalized irresolute functions and their basic properties and
relations to other fuzzy continuities are explored.
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1 Introduction

For a set X, a fuzzy set in X is a function A : X — [0.1]. Here A(z) represents the degree
of membership of z in the fuzzy subset A of X and by x4, we mean the fuzzy set that
maps every element in A to 1 and every element outside A to 0. Fuzzy topological spaces
(simply, spaces) were first introduced by [1,2]. A fuzzy topology on a set X is a collection
T of subsets of X satisfying: 0,1 € ¥, is closed under formation of finite intersections and
is closed under formation of arbitrary unions. Fuzzy topological spaces were studied by
several authors, see for example [1,3-8]. Let (X, %) be a fuzzy topological space. If \ is a
fuzzy set, then the closure of A (the smallest fuzzy closed set containing \) and the interior
of A\ (the largest fuzzy open set in \) will be denoted by Clz(A) and Int<()), respectively.
If no ambiguity appears, we use

Xandg\

instead, respectively. A fuzzy set X is called fuzzy semiopen [6] if there exists a fuzzy
open set p such that uy < A < Clg(u). Clearly X is a fuzzy semiopen set if and only if
A < Clz(Intz(N)). A complement of a fuzzy semiopen set is called fuzzy semiclosed. The
fuzzy semi-interior of A is the union of all fuzzy semi-open subsets contained in A and is
denoted by sInt( A). A is called fuzzy preopen if A < Intz(Clz(N)).A is called fuzzy a—open
if A < Intz(Clg(Intz( N))) and fuzzy S—open if A < Clz(Intz(Clz( A))). A is called
fuzzy regular open if X = Intz(Clz(\)). Complements of fuzzy regular open sets are called
fuzzy regular closed. X is called fuzzy preclosed if Cl(Int()\)) < A and fuzzy regular closed
if A = Cl(Int(N). X is a fuzzy generalized closed set if A < p and p € ¥ implies that
A < . A fuzzy function f: (X, %) — (Y, %) is called fuzzy generalized continuous if f=(\)
is fuzzy generalized closed in (X, ) for every fuzzy closed set A of (Y, %’) and fuzzy contra-
semi-continuous if f=1(\) is fuzzy semiopen in (X, T) for every fuzzy closed set A of (Y, T').
For more on the preceding notions, the reader is referred to [1,2,4,6,8].

We introduce the relatively new notions of fuzzy L—closed sets, which is closely related
to the class of fuzzy closed subsets. We show that the collection of all fuzzy L—open
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subsets of a space (X, %) forms a fuzzy topology that is finer than ¥ and we investigate
several characterizations of fuzzy L—open and fuzzy L—closed notions via the operations
of interior and closure. In section 3, we introduce the notion of fuzzy L-generalized closed
sets and study connections to other weak and strong forms of fuzzy generalized closed sets.
In addition several interesting properties and constructions of fuzzy L-generalized closed
sets are discussed. Section 4 is devoted to introducing and studying fuzzy L-generalized
continuous and fuzzy L-generalized irresolute functions and connections to other similar
forms of fuzzy continuity.

2 Fuzzy L-closed sets

We begin this section by introducing the notions of fuzzy L—open and fuzzy L—closed
subsets.

Definition 1 Let p be a fuzzy subset of a space (X, 7). The fuzzy L-interior of u is the
union of all fuzzy subsets of X whose closures are contained in Int(w), and is denoted by
Intr, (). The fuzzy L—closure of p is Cly,(u) is the smallest fuzzy closed set containing p.
w is called fuzzy L-open if p = Inty(u). The complement of a fuzzy L-open subset is called
fuzzy L-closed.

Clearly Intr, (1) < Int(p) < p and hence every fuzzy L-open set is fuzzy open and thus
every fuzzy L-closed set is fuzzy closed, but the converses needs not be true.
Example 1 Let X = {a,b,c} and 7 = {0, 1, X{a}> X{5}> X{a,p} }- Then X4} is a fuzzy open
set that is not a fuzzy L-open as Intr(Intr(X{a,}) = 0.

Next, we show that the collection of all fuzzy L-open subsets of a space (X, 7) forms a
fuzzy topology 7 that is finer than 7.
Theorem 1 If (X, 1) is a fuzzy space, then (X, 7ry) is a fuzzy space such that 7 2 Tpy,.

Proof We only need to show (X, 7p1) is a fuzzy space. Clearly 0 and 1 are fuzzy L-open
sets. If p,v € Tpr, then g = Intr () and v = Intr (). Now Intr(pny) = V{0 € m:CI(0) <
Int(uAvy)} = V{0 € 7:ClL(0) < Int(u) A Int(y)}. Thus Intr(uAvy) > Intr(u) AIntp(y) =
A v. Therefore, u Ay = Intr,(u A7) and so u Ay € Tpy.

If {pa @ « € A} is a collection of fuzzy L-open subsets of X, then for every a € A,
Intr,(pue) = pe. Hence

V{0 € 7:Cl(0) < Int(Vaecapa)}

V{0 € 7:Cl(0) < Vaealnt(pa)}

V{0 € T:Cl(0) < pa} for every o € A
= Inty(pa) for every o € A

Intr,(Vaeapa)

AVANIY]

pa for every a € A.
Hence Vaeapa < Intrp(Vacapa) and thus Vaeapa is fuzzy L-open. O

In classical topology, a set is always contained in its closure, but this is not the case in
7rr. Next we show that p < Clp () needs not be true.

Example 2 Let X = {a,b,¢,d} and 7 = {0, 1, X{a}> X{a,b}> X{c,d},X{a,c;d} }- Then xo <
X{ab,c}> Put Xiep £ Clrn(X{ab,c})-
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One might think that a fuzzy subset p of a fuzzy space X is fuzzy L- closed if and only
if p = Clp(u), but this is not true as shown in the next example.

Example 3 Consider the space in Example 2 and cosider p = xqp,c). Since Cl(x{a}) =
X{a.c}> X{a} % Clr(p). Since Clg (1) = p, but  is not a fuzzy L-open set.

Lemma 1 For any fuzzy set p of a fuzzy space X,

(i) Int(p) < Clp(p).

(i1) Int(u) =0 if and only if Cl(u) = 0.

Proof

(i) A & Cly(p) implies that there exists a fuzzy open set 6 containing A such that C1(6) A
Int(p) = 0. Hence A £ Int(u).

(ii) If A < Clp (), then for every fuzzy open subset 6 containing A, C1(0) A Int(u) # 0.
Hence there exists v < Cl(0) A Int(p) and as Int(u) is fuzzy open, 6 A Int(u) # 0.
Therefore Int(u) # 0.

Conversely if Clp(u) = 0, then by (i) as Int(u) < Clp(p), Int(p) = 0. O

Lemma 2 The union of a fuzzy open set with a fuzzy L-open-set is fuzzy open.

Proof Let p be an open set and n be a fuzzy L-open set. For all v < pvn, v < por

v < nandsoy < Int(p) < Int(pVn)ory < Intp(n) < Intp(uVn) < Int(pVn). O

Corollary 1 The intersection of a fuzzy closed set with a fuzzy L—closed set is fuzzy closed.

Lemma 3 If A is a fuzzy semiopen set of a fuzzy space X, Cly(u) = Cl(w).

Proof If 0 is a fuzzy open set containing A such that Ci(0) A Int(u) # 0, then there exists

v < CUO) A Int(p). Thus O A Int(pu) # 0 and so O A #0 . Therefore Cly, () < Cl(p).
Conversely if for every fuzzy open set 6 containing p we have 0Ap # 0, OANInt(Cl(p)) # 0,

since p is fuzzy semiopen. Thus there exists v < A Int(Cl(p)) and so O A Int(u) # 0 which
implies that Cl(0) A Int(p) # 0. Hence Cl(p) < Clp (). O

Corollary 2
(i) For any fuzzy subset p of X, Cly,(u) < Cl(p).
(ii) If p is a fuzzy semiopen subset of a space X, then u < Cly ().

Lemma 4 If u is a fuzzy L-closed set in a fuzzy space X, then Cly(u) < p.

Proof If u is a fuzzy L-closed subset, then p is fuzzy closed and thus by Corollary 2 (i),
Clr(p) < p. O

Next, we show that a fuzzy preclosed set that is also fuzzy semiopen equals its fuzzy
L-closure.

Theorem 2 If i is a fuzzy reqular closed subset of a fuzzy space X, then Clp(u) < p.

Proof Clp(u) < Cl(p) < CUCl(Int(p))) = Cl(Int(u)) < p. This together with Corollary
2 implies that p = Clp (). O



244 Talal Al-Hawary

3 Fuzzy L-generalized closed sets

In this section, we introduce the notion of fuzzy L-generalized closed set. Moreover, several
interesting properties and constructions of these subsets are discussed.

Definition 2 A fuzzy subset p of a fuzzy space X is called fuzzy L-generalized closed set if
whenever 0 is a fuzzy open subset containing p, we have Cly, (p) < 0. w is fuzzy L-generalized
open if 1 — p is fuzzy L-generalized closed set.

Theorem 3 A subset u of (X, 7) is fuzzy L-generalized open if and only if n < Intr(u),
whenever 1 < u and n is fuzzy closed in (X, 1).
Proof Let p be a fuzzy L-generalized open set and 1 be a fuzzy closed subset such that
n<p. Then1—pu <1-—mn.As1— puis fuzzy L-generalized closed set and as 1 — 7 is fuzzy
open, Clp(1—p) <1—mn.Son<1-Clr(1—p)=Inty(u).

Conversely if 1 — pu < 6 where 6 is fuzzy open, then the fuzzy closed set 1 —6 < p. Thus
1-0<Intr(p)=1-Clp(1—p)and so Clp(1—p) <0. O

Next we show that every fuzzy L- closed set is fuzzy L- generalized closed . Moreover, the
class of fuzzy generalized closed sets is properly placed between the classes of fuzzy semiopen
sets that are fuzzy closed and fuzzy L-generalized closed sets. Clearly every fuzzy closed set
that is fuzzy semiopen, by Lemma 1, is a fuzzy L- closed set. A fuzzy closed set is trivially
fuzzy generalized closed and every fuzzy generalized closed set is fuzzy L-generalized closed
by Corollary 2 (i).

The following result follows from Corollary 2 (i) and the fact that every fuzzy L-closed
set is fuzzy closed:

Lemma 5 FEvery fuzzy L-closed-set is fuzzy L-generalized closed.

The converse of the preceding result needs not be true.

Example 4 Let X = {a,b,c,d} and 7 = {0, 1, X {5}, X{c}s X{b,c}» X{a,b},X{a,b,c} }- Lhen as
Clr(X{a}) = 0, X{a} is fuzzy L-generalized closed, but it is not fuzzy L-closed and not fuzzy
generalized closed and hence not fuzzy closed. Also x4} is an fuzzy generalized closed set
that is not fuzzy closed.

The following is an immediate result from Lemma 1:

Theorem 4 If i is a fuzzy semiopen subset of a space X, the following are equivalent:
(1) p is fuzzy L-generalized closed,
(2) w is fuzzy generalized closed.

Its clear that if p <+, then Inty(u) < Intr(y) and Clp(p) < Clp(7).

Lemma 6 If u and v are fuzzy sets in a fuzzy space X, then Cly(p)V Clp(y) = Clp(uV7y)
and Clp(p A vy) < Clg(p) ACIL(y).

Proof Since p and v are subsets of u Vv, Clp(n) V Clp(vy) < Clp(p V7). On the other

hand, if n < Cl (V) and 6 is a fuzzy open set containing 7, then CI(0) A Int(u V) # 0.

Hence either CI(0) A Int(u) # 0 or Cl(0) A Int(y) # 0. Thus n < Clg(u) vV ClL(y).
Finally since p A v is a fuzzy subset of p and v, Cly(u A v) < Clp(u) A Cli(y). O

Corollary 3 Finite union of fuzzy L-generalized closed sets is fuzzy L-generalized closed.
While the finite intersection of fuzzy L-generalized closed sets needs not be fuzzy L-
generalized closed.
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Example 5 Let X = {CL, b,c,d, 6} and T = {Oa 15X{b}aX{c}aX{b,c}aX{a,b},X{a,b,c}}' Then
A = X{a,e,dy and ft = X{p,c,e} are fuzzy L-generalized closed sets since the only super fuzzy
open set of both is 1. But A A u = x4} is not fuzzy L-generalized closed.

Theorem 5 The intersection of a fuzzy L-generalized closed set with a fuzzy L-closed set
is fuzzy L-generalized closed.

Proof Let p be a fuzzy L-generalized closed set and n be a fuzzy L-closed set. Let 6 be
a fuzzy open set containing g A 7. Then g < 6V 1 —n. Since 1 — n is fuzzy L-open, by
Lemma 3, V1 —1n is fuzzy open and since p is fuzzy L-generalized closed set, Cly(uAn) <
Cl(u) AClr(n) and by Lemma 6, Clp(uAn) < Clp(u)An< (@V1—nAn=0An<6.0

4 Fuzzy L-generalized continuous and fuzzy L-generalized irreso-
lute functions

Definition 3 A fuzzy function f: (X,7) — (Y,7') is called
(1) Fuzzy L-generalized continuous if f~1(\) is fuzzy L-generalized closed set in (X, T)
for every fuzzy closed set A of (Y, 7'),
(2) Fuzzy L-generalized irresolute if f=1(\) is fuzzy L-generalized closed set in (X, T) for
every fuzzy L-generalized closed set set \ of (Y, 7').

Lemma 7 Let f : (X,7) — (Y,7') be a fuzzy generalized continuous. Then f is fuzzy
L-generalized continuous, but not conversely.

Proof Follows from the fact that every fuzzy generalized closed set is fuzzy L-generalized
closed. O

Example 6 Let X = {a,b,c,d,e} and 7 = {0, 1, x{6}> X{c}> X{b,c}> X{a,b},X{a,b,c}} and
7 =1{0,1,xqa}. Let f: (X,7) — (X,7’) be the identity function. Since f~'(X{(a.pc}) =
X{ab,ct = Clo(X{ap,c}), [ is fuzzy L-generalized continuous, but f is not fuzzy generalized
continuous and hence not fuzzy continuous.

Even the composition of fuzzy L-generalized continuous functions needs not be fuzzy
L-generalized continuous.

Example 7 Let f be the fuzzy function in Example 6 and g : (X,7 ) — (X,7") be the
identity fuzzy function. It is easy to see that ¢ is also a fuzzy L-generalized continuous
function, but g o f is not fuzzy L-generalized continuous as X} is fuzzy closed in (X, ),
but not fuzzy L-generalized continuous in (X, 7).

Corollary 4 If f: (X, 7) — (Y, 7') is a fuzzy continuous and fuzzy contra-semi-continuous,
then f is fuzzy L-generalized continuous.

Proof If ) is a fuzzy closed subset of Y, then as f is fuzzy continuous f~1()) is fuzzy
closed and as f is fuzzy contra-semi-continuous, f~1()) is fuzzy semiopen. Thus f~1()\) is
fuzzy L-generalized closed set. O

We end this section by giving a necessary condition for a fuzzy L-generalized irresolute
function to be fuzzy L-generalized continuous.

Theorem 6 Iff: (X,7) — (Y, 7') is bijective, fuzzy open and fuzzy L-generalized irresolute,
then fis fuzzy L-generalized closed.
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Proof Let A be a fuzzy closed subset of Y and let f~'(\) < =, where v € 7. Clearly,
A < f(9). Since f(y) € 7" and since A is fuzzy L-generalized closed set, Clr(\) < f(v) and
thus f=1(ClL(N\)) < ~. Since f is fuzzy L-generalized irresolute and since Clp(\) is fuzzy
L-generalized closed set in Y, f~1(Cly()\) is fuzzy L-generalized closed set. f~1(Clp()\) <
Clo(f~YCliL(N)) = f~H(ClL(N)) < 5. Therefore, f~1(\) is fuzzy L-generalized closed set
and hence, f is fuzzy L-generalized continuous. O
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