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Abstract An accurate forecasting of tropospheric ozone (O3) concentration is benefi-
cial for strategic planning of air quality. In this study, various forecasting techniques are
used to forecast the daily maximum O3 concentration levels at a monitoring station
in the Klang Valley, Malaysia. The Box-Jenkins autoregressive integrated moving-
average (ARIMA) approach and three types of neural network models, namely, back-
propagation neural network, Elman recurrent neural network and radial basis function
neural network are considered. The daily maximum data, spanning from 1 January
2011 to 7 August 2011, was obtained from the Department of Environment, Malaysia.
The performance of the four methods in forecasting future values of ozone concentra-
tions is evaluated based on three criteria, which are root mean square error (RMSE),
mean absolute error (MAE) and mean absolute percentage error (MAPE). The find-
ings show that the Box-Jenkins approach outperformed the artificial neural network
methods.
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1 Introduction

Ozone (O3) is a colourless and odourless gas having high reactivity. O3 exists in both
upper atmosphere (stratosphere) and lower atmosphere (troposphere). The prediction and
forecasting of O3 is challenging as it is not released directly from a source, but resulting from
complicated chemical reaction in air. O3 at different atmosphere shows contrasting effects,
in which stratospheric O3 is helpful, while tropospheric O3 is harmful [1]. Stratospheric O3

is formed naturally through the interaction of sunlight and oxygen (O2). It is important
to human and other living organisms on the earth as it shields the dangerous ultraviolet
radiation from sunlight [1]. Meanwhile, tropospheric O3, which is our focus in this study,
is caused by the chemical reaction between the nitrogen oxides (NOx) and the volatile
organic compounds (VOCs) in the existence of sunlight. The VOCs are mainly originated
from motor vehicles and industry. Hence, urban areas normally record higher O3 levels.
O3 is detrimental to not only human’s respiratory systems, but also plants. Other factors
affecting the O3 concentration in an area include wind speed, humidity and temperature.
High concentration of O3 is always associated with dry, warm and breezy weather [1].
Rural and sub-urban areas have also been impacted due to the wind effect transporting O3

pollution from the sources of O3 precursors [2].
Before the 70s, environmental problems in Malaysia gained little heed. The frequent

haze incidences in Southeast Asia since 1983 have challenged the environmental surveil-
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lance system in Malaysia as well as raising consciousness of the environment. From July to
October 1997, smog from bonfire seriously influenced the air quality in Malaysia. During
normal periods, automotive emissions contributed to a large percentage of the total emis-
sions in the city. As a result, the government inaugurated the Air Pollution Index (API)
in 1989 to act as an indicator of air quality [3]. The Department of Environment (DOE)
is responsible for the monitoring of air quality in Malaysia via a system of 52 continuous
monitoring stations, which are placed strategically in different areas (urban, sub-urban and
industrial) all around Malaysia [2]. Based on the Malaysian Ambient Air Quality Guide-
lines, the stipulated level for O3 is 0.10 and 0.06 parts per million (ppm) for the averaging
time of an hour and eight hours respectively.

To have an enhanced system of air quality control and public forewarning for O3 levels,
there is a need for developing an accurate modelling approach to predict the future concen-
tration of O3 [4]. To better understand the characteristics of certain pollutants over time,
analysis of time series, which is a set of ordered data with constant spaced time intervals, is
among the best methodologies. One of the popular time series methods is the Box-Jenkins
autoregressive integrated moving average (ARIMA). This method has been widely used in
various studies to explain the relationship of specific variable with its historical data. An
alternative method that is commonly used for modelling time series is the artificial neural
network (ANN), a sophisticated mathematical methodology which is inspired by the be-
haviour of human brain and nervous system’s neurons. The most familiar ANN methods
used are the back-propagation neural network (BPNN), Elman recurrent neural network
(ERNN) and radial basis function neural network (RBFNN). BPNN is a multi-layered per-
ceptrons (MLPs) in which the signals flow forward in uni-direction with the algorithm of
back propagation of errors. In contrast to BPNN, ERNN is a type of recurrent neural net-
work in which the signals can flow forward and backward with an augmented context layer
to store the lagged hidden values. This property enables ERNN to learn the time series
data more vigorously. RBFNN is another popular feed-forward neural network which uses
radial basis activation function and it is developed to solve the primary pitfall of BPNN of
easily dropping into the local minima during the training [5].

Many studies have been conducted to compare the capability of the Box-Jenkins ARIMA
approach, the neural networks and other techniques in forecasting future values of time
series. Yi and Prybutok [4] compared a feed-forward neural network model with the Box-
Jenkins ARIMA models and the regression method for forecasting the daily maximum O3

level in the Dallas-Fort Worth area in the United States of America. The study included
secondary variables such as temperature, wind speed, wind direction, and other air pol-
lutant measurements. Based on the root mean square error (RMSE) as the performance
indicator, the neural network showed its superiority over the other two models. In another
research, Ettouney et al. [6] developed an innovative modelling technique which utilized
two feed-forward neural networks (FFNNs) to predict the O3 level in Kuwait. Several pre-
cursors of O3 and other meteorological parameters were taken into consideration. Principal
Component Analysis (PCA) was applied to minimize the dimensionality of the multiple
variables. The two similar neural networks functioned as two regressors in series. The orig-
inal data was fed into the first FFNN for training and the residual dataset, calculated from
the predicted values from the first FFNN, was used to train the second FFNN. The outputs
and the original series were then compared for the two FFNNs and the single FFNN to
obtain the regression coefficient (R) and mean square error (MSE), and the results showed
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that double FFNNs was better. However, this study suggested that shorter-period mod-
elling was better due to the noise present in the data. In Malaysia, Ul-Saufie et al. [7]
compared multiple linear regression (MLR) model with ANN in estimating PM10 concen-
tration in Seberang Jaya, Pulau Pinang, based on gaseous and meteorological parameters.
The hourly observations for PM10, from January 2004 to December 2007, were chosen and
averaged to obtain 1430 daily observations to predict PM10 level. The performance of the
models was evaluated based on prediction accuracy (PA), coefficient of determination (R2),
index of agreement (IA), normalised absolute error (NAE) and RMSE. The findings proved
that ANN performed better than MLR.

In Peninsular Malaysia, the Klang Valley area is one of the areas that recorded high
levels of O3 concentrations. This area is densely populated due to rapid industrialisation
and rising economy. Motivated by previous research, this study aims to model the O3

concentration in an area of Klang Valley by using the Box-Jenkins ARIMA approach and
three types of artificial neural network methods which are BPNN, ERNN and RBFNN. The
performance of all the methods in forecasting O3 concentrations is compared based on some
evaluation indices.

2 Methods

In this study, the O3 time series is fitted with the Box-Jenkins ARIMA modeling approach
and three types of ANN methods and then the performance of these methods in forecasting
the future values of the series is compared. The above-mentioned approaches are introduced
as follows.

2.1 ARIMA modelling

The Box-Jenkins ARIMA modelling approach is one of the most popular techniques to
analyze time series. If we denote {Xt}, t = 1, 2, . . . , n as a stationary ARMA process
with zero mean, then the ARMA(p, q) model is defined as

(

1 − φ1B − φ2B
2 − · · · − φpB

p
)

Xt =
(

1 + θ1B + θ2B
2 + · · ·+ θqB

q
)

Zt

where φi, i = 1, . . . , p and θj , j = 1, . . . , q are p AR parameters and q MA parameters,
respectively. Here, {Zt} is white noise with mean 0 and variance σ2, and B is the backward
shift operator with BkXt = Xt−k where k is the lag number. Special cases of ARMA model
are AR(p) model and MA(q) model, which are expressed by

(

1 − φ1B − φ2B
2 − · · · − φpB

p
)

Xt = Zt

and
Xt =

(

1 + θ1B + θ2B
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q
)

Zt,

respectively. If the series is not stationary and the autocovariance function is slowly decreas-
ing, then the series can be transformed to generate a new series that exhibits stationarity
and have a fast decreasing autocovariance function. This can be achieved by differencing
the series. By doing this, the series {Xt} is assumed to have an ARIMA (p, d, q) process

if Yt = (1 − B)d
Xt, where d is a nonnegative integer, is a causal ARMA (p, q) process.

ARIMA models are useful for representing data with trends.
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The Box-Jenkins approach involves four steps: model identification, estimation of the pa-
rameters, diagnostic checking and forecasting. In our analysis, the procedure is implemented
using the Interactive Time Series Modelling (ITSM) software [8]. In model identification,
the stationarity and the existence of seasonality or trend of the series are determined. This
is done by plotting the sample autocorrelation function (ACF) and the partial autocorrela-
tion function (PACF) up to lag 40. If the functions are rapidly decreasing, then we assume
the series is stationary; otherwise differencing will be performed until the series have rapidly
decreasing ACF and PACF. Besides observing the ACF and PACF plots, the stationarity
of the series is tested by the Phillips-Perron test which is performed using Eviews software.
Then, the orders, p and q, of the ARMA model are identified by using ACF and PACF of
the stationary series.

In the next step, the parameters of the possible ARMA model are estimated. This
is done by some preliminary estimation procedures, followed by the maximum likelihood
method. There might be some possible ARMA models suggested by the ACF and PACF
plots. Therefore, a common selection criterion, Akaike Information Corrected Criterion
(AICC) is used for selecting the best model, where the best one is that with the lowest
AICC.

In the third step, diagnostic checking is performed on the residuals, {Zt}. The residuals
are supposed to be white noise which is independent and identically distributed. If the
assumptions are not satisfied, another model should be considered for the series. There are
several tests available in ITSM to test for randomness of the residual: the Ljung-Box test,
the McLeod-Li test, turning points test, different sign test and rank test. The normality
assumption is tested by Jarque-Bera test. In the final step, the best model will be used to
forecast future values of the series if the randomness of the residuals is satisfactory.

2.2 Artificial neural networks (ANN)

ANN is a model equipped with the capability to extract nonlinear information from a time
series. The gradient descent algorithm used to train the MLPs is well-known as back-error
propagation algorithm [9]. In ANN, the input neurons correspond to the synapses in the
biological neurons, and the weights correspond to the strength of the signals. First, the
input data is sent into the input layer. The weighted sums of the inputs are then fed
forward to the hidden layer with an activation function. Then, the weighted hidden sums
(activation value) are processed toward output layer with another mathematical function
to compute the final output where different weights produce different final output. It
has been shown that through learning or training (weight adjustment procedure), ANN is
able to approximate any (nonlinear) functions if suitable weight parameters are selected.
The weight adjusting procedure is known as learning or training. Diverse applications of
ANNs cover forecasting, pattern recognition and classification [9]. One of the advantages
of ANN is the fast computation resulted from the parallel architecture of ANN model in
which all neurons function concurrently [10]. In addition, ANN could infer the undercover
nonlinear relationship in time series. Besides, ANN model does not impose any underlying
assumptions on the distribution of data collected [5].

In our analysis, the modelling of ANN is implemented using the software Matlab Neural
Network Toolbox. The function newff() is used to realize the training of BPNN. There are
various training algorithms that can be used to train the network. Three different activa-
tion functions can be selected from the Matlab function, namely logistic sigmoid (logsig),
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hyperbolic tangent sigmoid (tansig) and linear (purelin) transfer functions. The function
newelm() in Matlab is used to train the ERNN while the function of newrb() is used
for the training of RBF network. This function realizes the RBFNN with supervised OLS
algorithm [5]. The default activation function in Matlab, which is the Gaussian function, is
used in the hidden layer, while the linear function (default function) is used in the output
layer.

In neural network modelling, the series is partitioned into three non-overlapping subsets,
which are training, validation and testing sets. The training set is used for modifying the
weights of the network, and the validation set is used to determine the stopping of the
training process. Finally, the testing set is used to verify the network’s performance. The
need of validation set is to avoid overfitting, which is a situation where the training starts to
model the noise in the training data. In the training stage, the training and the validation
errors decrease along with the iterations. Just as overfitting occurs, the validation error
increases whereas the training error remains its downtrend [9]. The number of successive
iterations that the MSE in the validation set fails to decrease is called the number of
validation failures. To overcome overfitting and to improve the generalization capability
of BPNN and ERNN, several stopping criteria are used in the Matlab Neural Network
Toolbox. Normally, the training stops when the gradient reaches the minimum gradient,
whose default depends on the type of learning algorithm, and (or) when the number of
validation failures reaches the maximum number of failures (6 times in default). When
the number of validation failures reaches the maximum number of iterations, the training
stops and the weights of the network at which the MSE of the validation set is minimal
are returned and the structure is fixed. The fixed structure is then used to predict the O3

concentration in the testing set. The procedure is repeated for all the predetermined values
of k (1 to 5), where k is lag number and as defined in Section 2.1. The best model, based
on the smallest value of testing error, is used to forecast the O3 concentration levels for the
next seven days iteratively.

On the other hand, RBFNN training iteration using Matlab is different from that of
BPNN and ERNN. Initially, the RBF network is simulated linearly (without hidden layer).
Then, the hidden radial basis neurons are added iteratively with corresponding weights,
and the output-layer weights are adjusted accordingly whenever a hidden neuron is added
in order to minimize the error. These procedures continue until the error (MSE) falls below
the desired minimum error. The minimum error acts as the stopping criterion as in BPNN
and ERNN to avoid the overfitting of the data. Finally, the best model chosen is the model
that provides the lowest testing error.

3 Results and discussion

In current study, the data of the daily maximum O3 concentration levels which was collected
at SMK Permaisuri, Cheras, from 1 January 2011 to 7 August 2011 are used. The data are
obtained from the Department of Environment (DOE), Malaysia. This monitoring station
is located in the Klang Valley area and it is classified by DOE in urban category. The O3

level recorded from this station is among the highest in Malaysia in 2011. The range for
the O3 level for this time period of study is from 0.002 to 0.150 ppm with mean 0.071 ppm
and variance 0.000831. The time series plot of the data is shown in Figure 1. The ACF
and PACF for the series drawn up to lag 40 are displayed in Figure 2. From the figures, it
is observed that the series does not clearly show any seasonal pattern.
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Figure 1: Time series plot of O3 concentration levels
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Since it is known that ARIMA model is not effective in doing long-term forecast, short-
term forecast period was set. Hence, data from 1 January to 31 July 2011 are used for
ARIMA modelling and the remaining data from 1 August to 7 August 2011 are kept for
forecasting evaluation. Thus, we have 212 observations for modelling and 7 observations for
forecasting evaluation. The procedure is implemented using ITSM software. The Phillips-
Perron test and the Jarque-Bera test are performed to check for stationarity and normality
assumptions, respectively. It can be concluded from the results that the series is stationary
and normally distributed. After satisfying the stationarity of the series, the ARMA model
is fitted to the data with various combinations of p and q, where we fix p, q = 0, 1, 2,
3, 4 and 5. The best model is chosen based on the minimum value of AICC. The results
show that the best model is AR(2) with AICC = −947.156. Residual analyses conclude
that the residual is white noise and normally distributed (all p-values >0.05). Furthermore,
all the coefficients are statistically significant at 5% level of significance. Therefore, this
model is used to forecast O3 levels from 1 August to 7 August 2011. Having AR(2) as the
best model, we can infer that the current value of the concentration is associated with the
concentration levels of the previous two days.

For the neural network modelling, the first 212 observations are again used for modelling.
To determine the size of the input matrix or the number of input neurons, ACF and PACF
for the original series (Figure 2) and the order of ARIMA model are referred to. Since the
best fitted model that we obtained was AR(2), this suggests that the third value may be
associated with the previous two consecutive values. Therefore, it is possible to generate an
input matrix of 2 x 210 (similarly, the number of input neurons is two), and its corresponding
output (target) matrix of 1 x 210. However, in practice the number of input neurons is
tested from one to five neurons for all the three neural networks. The output neuron is one,
standing for the next day forecast of O3 concentration. A single hidden layer is selected
as many experimental results have shown that one hidden layer is adequate to map any
nonlinear functions [11]. Suppose Xt represents the O3 concentration at time t, the input
and its corresponding target matrices of the data are written as follows:

Input matrix =











X1

X2

X2 . . .

X3

X212−k

X213−k

...
. . .

...
Xk Xk+1 · · · X211











and the corresponding target matrix = [Xk+1, Xk+2, . . . , X212] where k = 1, 2, 3, 4, 5 is
the number of lags, indicating the current value depends on k previous values. From these
(212−k) columns, the data is divided into training, validation and testing sets in the ratio of
7:2:1. The training proceeds after setting the parameters into the specific Matlab functions
of neural network.

For BPNN and ERNN, learning rates, training algorithms and the number of hidden
nodes influence the generalization capability of the neural networks [11]. Few numbers
of hidden neurons may cause underfitting while excessive hidden neurons may cause over
fitting [12]. To date, there is no theory developed for selecting the number of hidden-layer
neurons. Trial and error is used to fix the neural network structure. Therefore, in our
analysis for BPNN, the learning rate constants ranged from 0.01 to 0.05 are examined, with
the increment of 0.01. The number of hidden neurons are selected empirically from 2 to 50,
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where 2 to 20 with the increment of 2, 20 to 30 with the increment of 5, and lastly 30 to 50
with the increment of 10. The Levenberg-Marquardt training algorithm is selected. This
combining algorithm of steepest descent method and the Gauss-Newton’s method hence
possesses the stability of the steepest descent algorithm and the speed advantage of the
Gauss-Newton’s algorithm [5]. The activation function used in both hidden and output
layers is the tansig transfer function as it gives lowest value of RMSE. The best result is
obtained when the number of hidden neuron is 18, learning rate is 0.02 and k = 3.

The parameters of ERNN are similar to that of BPNN. The learning rate constants are
tested from 0.01 to 0.05 with an increment of 0.01, and the numbers of hidden neurons are
tried from 2 to 50, where 2 to 30 with an increment of 2 and 30 to 50 with an increment of
5. The Levenberg-Marquardt algorithm is applied in this study. The hidden layer employs
the tansig function while the output layer uses the purelin function as these two functions
give lowest value of RMSE after some experiments with various combinations of parameters.
The best result is obtained when the learning rate constant is set to 0.03, the number of
hidden neuron is 22 and k = 2.

For RBFNN, different performance goal (MSE) of the training can be set accordingly to
obtain the lowest testing error. Different spread constants are examined, namely from 0.1
to 2.0 with an increment of 0.1. Different numbers of input neurons and spread constants
will affect the number of hidden neurons required to attain a specific error. Having the
same desired error, the number of hidden neurons needed increases as the spread constant
increases. The best result is obtained when the spread constant is 0.3, the number of hidden
neuron is 190 and k = 2. The minimum error is set by trial and error from 0 to 6.5× 10−4.

The performance of the four methods in forecasting future values of O3 concentrations is
compared and evaluated based on three metrics, which are root mean square error (RMSE),
mean absolute error (MAE) and mean absolute percentage error (MAPE). These three
metrics are defined by:

RMSE =

√

√

√

√

1

T

T
∑

t=1

(Ot − Pt)
2

MAE =
1

T

T
∑

t=1

|Ot − Pt|

MAPE =
1

T

T
∑

t=1

|Ot − Pt|

Ot

where Ot andPt are the observed and forecast values at time t, respectively. Table 1 displays
the observed and forecast values (up to three decimal places) of the four methods together
with the values of RMSE, MAE and MAPE. The plot of observed and forecast values is
shown in Figure 3. It can be seen from Table 1 that the ARIMA model outperforms the
neural networks. Among the neural networks, BPNN gives the best performance. The worst
method is ERNN as it has the largest values of RMSE, MAE and MAPE. From Figure 3,
it seems that all the methods fail to capture the sharp drops of O3 levels on 4th and 7th

August 2011. Furthermore, all the methods overestimate the O3 levels for all the 7 days of
forecast.
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Table 1: The observed and forecast values of O3 concentration level from the four techniques

Date Observed AR (2) BPNN ERNN RBFNN
1 August 2011 0.061 0.063 0.070 0.064 0.064

2 August 2011 0.060 0.066 0.077 0.076 0.075
3 August 2011 0.057 0.068 0.078 0.078 0.075
4 August 2011 0.041 0.069 0.077 0.083 0.081
5 August 2011 0.067 0.070 0.076 0.081 0.080
6 August 2011 0.058 0.070 0.075 0.083 0.083
7 August 2011 0.036 0.070 0.075 0.082 0.082

RMSE 0.018 0.024 0.028 0.027
MAE 0.014 0.021 0.024 0.023

MAPE 0.312 0.458 0.517 0.499

Figure 3: Plot of the observed and forecast values of O3 concentrations level from the four techniques
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4 Conclusion

An accurate forecasting of tropospheric ozone (O3) concentration is beneficial for the strat-
egy planning and control of air quality. In previous studies, several researchers introduced
different approaches to forecast O3 concentration and other air pollutants. Motivated
from previous research, the Box-Jenkins autoregressive integrated moving-average (ARIMA)
modelling approach and the three artificial neural network (ANN) models mentioned above
are used to model and forecast the time series of O3 daily maximum concentration from a
monitoring station at SMK Cheras, Selangor. This station is located in the Klang Valley
and the O3 level recorded here is among the highest in Malaysia. The performance of the
four methods in forecasting future values of O3 concentrations is evaluated based on three
criteria, which are root mean square error (RMSE), mean absolute error (MAE), and mean
absolute percentage error (MAPE). The findings show that the AR(2) model outperforms
the artificial neural network models and the worst model is ERNN. The findings also indi-
cate that all the models overestimate the levels for the entire period of forecasting and fail
to capture sharp drops of O3 levels on 4th and 7th August.

Theoretically, ANN is capable of capturing the nonlinear correlation in the time series.
Furthermore, any desired accuracy of the function approximation can be achieved. Con-
versely, ARIMA model can only extract the linear relationship in the time series. However,
the ARIMA model can easily be interpreted, while the black-box feature of ANN makes the
interpretation of the behaviour of particular variable to be difficult. Moreover, reproducible
outputs are unable to obtain due to the random assignment of weights and biases to the
BPNN and ERNN in Matlab’s functions. From our findings, it is shown that the descending
order of the forecast performance of the three models is BPNN, RBFNN, and ERNN.

There are several limitations in our study. Firstly, only a seven-month period of O3

concentration data is available in this study. The comparatively short period of data may
affect the forecasting accuracy of the methods. Secondly, other forecasting methods can be
used besides the four different methods used in this study. Furthermore, similar research
could be conducted on the data from other stations to confirm the performance of these
models. Related factors that will cause different effects on model performance can also be
included.

Tropospheric O3 seriously endangers human health and environment. The effective
management of the control and public warning strategies for O3 concentration can be effi-
ciently implemented by the accurate forecast of O3 concentration. Hence, further research
on more accurate forecasting techniques should be carried out and these techniques should
be implemented in real application.
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