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1 Introduction

A continuous complex-valued function f = u + v defined in a simply complex domain D
is said to be harmonic in D. We call h the analytic part and g the co-analytic part of f
if both w and v are real harmonic in D. In any simply connected domain, we can write
f = h+7 where h and g are analytic in D. A necessary and sufficient condition for f to be
locally univalent and sense preserving in D is that |h'(2)| > |¢'(2)|, z € D(see Clunie [1]).

Denote by Sy the class of functions f = h + g that are harmonic univalent and sense
preserving in the unit disc U = {z : |z| < 1} for which f(0) = f.(0) — 1 = 0. Then for
f=h+79 € Sy we may express the analytic functions h and g as

h(z) =2+ Z anz”, g(z) = anz", |b1] < 1. (1.1)
n=2 n=1

Observe that Sy reduces to S, the class of normalized univalent analytic functions, if the
co-analytic part of f is zero.
Hence

f2) =2+ anz"+ ) bz, |bi| < 1. (1.2)
n=2 n=1
We denote H the subclass of H consists of harmonic functions f = h 4 g of the form
f(z):z—zanzn—i-anz", |b1] < 1. (1.3)
n=2 n=1

A function f = h+ g with h and g given by (1.1) is said to beharmonic starlike of order
x(0<x <1)for|z] =r<1,if

9 oy Larg f(rei?) | zh/(2)
2 (arg f(re 9)) = Im{W} = Re{

#h(z) — 29'(2) . 1.4
e }ZX 44
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The class of all harmonic starlike functions of order x is denoted by S3; (x) and extensively
studied by Jahangiri [2]. The cases x = 0 and b; = 1 were studied by Silverman and Silvia
[3] and Silverman [4]. Other related works of the class H also appeared in [5, 6].

Lastly, let Sgdenote the class of starlike functions with respect to symmetric points.
This class was introduced by Sakaguchi [7] where f satisfying

NI .
R {f(z) T } > 0, el. (1.5)

Then, Ahuja and Jahangiri [8] studied the class of harmonic starlike functions of order
X(0 < x < 1) with respect to symmetric points, Sj;¢(x) and satisfying the condition

8 i zh (2) — z¢' (2
Im{f( 2§9f(7”60) }—Re 2[ (2) — 29’ (%) (L6)

re) = J(=re) TErrelE

Let the Hadamard product (or convolution) of two power series

D(z) =2+ Z Pn2"
n=2

and

<P(Z) =z+ Z P 2"
n=2
be defined by
(®rp)(2) = (0 ®)(2) =2+ > dnthnz".

n=2

Recently, Al Alamoush and Darus [9] derived a new operator as
DE soaf(z) =2+ Ma+p8-1)(n—1)+1]"C(n)anz" (1.7)
n=2

where

0<aSL0<6SLAz&éweNmzeac@my_(”+5—1)Ff@+®

J S T()I(n+1)

and D% f(z) is the Hadamard product (or convolution) between Salagean operator and
Ruscheweyh operator (see Salagean [10], Ruscheweyh [11]).
The operator D’;ﬁy&)\f(z) for harmonic functions f = h + 7 given by (1.1) is defined as

DZ,ﬁ,s,,\f(Z) = DZ,ﬁ,s,,\h(Z) + DZ,[},J,)\Q(Z);
where

o0
DZ,ﬁ,&Ah(z) =z+ Z FZ,[},J,)\ anz",

n=2
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and
aﬁ&)\g Zraﬁé)\bz

where

Tk ssa=Na+8-1)(n-1)+1"C(5,n). (1.8)

Now,by using the operator D’;ﬁy&)\ and for x(0 < x < 1), S¢(e, 3,6, A; x) denote the class
of harmonic univalent functions starlike of order with respect to symmetric points. The
function f € S} ¢(a, 3,6, A; x) is satisfying

I T C)
e
Dz,ﬁ,é,)\-f(z) - D§7ﬁ757)\f(—2)
2 [Z (Diﬁy&)\h(z)) —F (Dz,ﬁ,a,xg(z)) ]
= e >y (1.9)
[D’;ﬁy&)\h(z) - Diyﬁﬁy)\h(_z)} + [Dz,ﬁ,s,xg(z) - Dzﬁymg(—z)}
where

(ny,ﬁ,a,,\f(z)) ;9 (Dk B, 5,\f(7"€ ))

In this paper, we have obtained the coefficient conditions for the classes S};¢(a, 3,9, A; x)
and S} (a, 3,6, \; x). A representation theorem, inclusion properties and distortion bounds
for the class S} (o, 8,0, A; x) are also established.

2 Coefficient characterization

The sufficient coefficient bound for the harmonic functions in the subclass S} ¢ (e, 3, 6, A; X)
is deduced and presented.

Theorem 1 Let a function f = h+g be given in (1.2) and F’;ﬁy&)\ >1. If

> (2n — x(1—=(=1)™) 2n + x(1 — (=1)™) 14y
;{ 2(1_X) |Qn|+ _X) |bn| }lri,ﬁ,&)\’ S 1—ﬂ|b1| (21)

where |b1| < ﬁ—i, x(0 < x < 1),1“’;7[,757)\ be defined by (1.7) and z € U, then f is
sense-preserving harmonic univalent in U and f € S} (e, 5,0, A; x)-

Proof To verify that f is orientation preserving, we show|h'(z)| > |¢'(2)|,

W ()] = ’1 + Y napz"t

[eS)
>1— 3 nlan| 2]}
n=2
[S)

>1- > nlay|.

n=2
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By the hypothesis of the theorem, ’F’géﬁ)&)\’ > 1 and by (2.1) give

X 2n—x(1—(—1
Zl_nzz)%rkﬁmmﬂ

> 3o 2ot(-(0) Tk

= 2(1—x) ﬁé)\|b |
> > n by

n=1
> 3 n ol 27
=19'()|.

Thus, f is orientation preserving in U.

Next, we prove f € Spg(a, 5,9, A x). It suffices to show that the condition (1.8) is
satisfied. Then, let

’

2 [Z (D’;ﬁy&/\h(z)) -z (Di,g,a,,\g(z))/] A(z)

w = =

[ny,ﬁ,a,,\h(z) - Di,ﬁ,é,)\h(_z)} + [ley,ﬁ,a,,\g(z) - Di,ﬁ,é,)\g(_z)} B(z)

where )
A(z) =2 |z (D’;ﬁ)&)\h(z)) —z (D’;ﬁ)&)\g(z)) ]
=2|z+ 22 n F’;ﬁ’&)\anz" — 21 n F’;ﬁ)&)\bnz"] ,
and

B(z) = [ny,g,a,,\h(z) - Di,ﬁ,é,)\h(_z)} + [D’;,g,a,xg(z) - Di,ﬁ,é,)\g(_z)}
2z + 22 1= (=D)"] T gspanz"+ 3 [1 = (=1)"] Tk 55,002"

n=1

Using the fact that Re{w(z)} > x if and only if |1 — x + w| > |1 + x — w]|, it suffices to
show that

[A(2) + (1 = x)B(2)] = [A(2) = (1 +x)B(2)| = 0. (2.2)
Substituting for A(z) and B(z) we get

[2+2(1-x

~—

J 5 et (1=30)(1 = (<1 Th 000"
= (2= (1= )[1 = (1)) T4 5 "]
2201+ Wz + 35 21— (L4 01— ()] Th 502"

20 + (1 +X)[1 = (=1)"] T 5 5.5 bn2"]

MS*

1

=[22=x)]z+ 22 20+ (1= x)(1 = (=1)™)] T§ g 52an2"

- 2::1 20— (1 = )[L = (=1)"] T 55,0027

n
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Slm2xz 3 20— (T4 X)(1 = (1)) TE 45 ane”

n=2

- 21 20+ (1 +X)[1 = (=1)"] T 555 bn2"]
|

o0

41 =)l = 3 [0 = 2x(1 = (<1 T 5ol 21"
= 3 [dn e+ 2[1 = ()] T I |21

=401 =1 = 3 (2EET) T g galanl 12
= 3 [(BETT) T saalbal 2771
40—l = 3 (PHEEG) Tl
= 2 ((5EET) Thsalbal )
= 4(1 - x)|7]
— x| - { 22 [ (%) lan| — (%) b, } F’;ﬁy&/\’} }

This last expression is nonnegative by (2.1), and thus f € Sy ¢(c, 3,6, A; x).
For

oo oo
Do lwal D lyal = 1,
n=2 n=1

the harmonic univalent functions

o\ 2(1 - x) "
z)=z+ Z <2n —x(1— (—U")Fi,ﬁ,m) "

2(1 ) (2.3)
—x .
+ Ynz
Z 2n + x (1 — (‘U")Fi,ﬁ,m
shows the equality in the coefficient bound given by (2.1) is sharp. O

The following result proves the hypothesis in Theorem 1 is a necessary and sufficient
condition for f to be in the classS}; (o, 5,0, A; X).

Theorem 2 Let a functionf = h + g be given in (1.3). Then f € S§¢(c, 8,0, A;x) if and
only if

nz_:z{ 2(1 =x) lan] + 21—y } Coponl <1- bl @4

where [b1| < {2, x(0 < x < 1),T% 55 be defined by (1.7) and z € U.

Proof Since Sjg(a, 3,6, \;x) C Sirg(a, 3,6, \; x)., sufficiency part follows from Theorem 1.
To prove the necessity part, assume that f € S}, 4(«, 3,0, A; x). For functions f of the form
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(1.3), the condition (1.8) is equivalent to

2 [z (Di,ﬁ,J,Ah(Z))/ T (Df‘ﬁ"s’Ag(Z))/}

Re k k & & X
[Da,ﬁ,é,)\h(z) - Da,ﬁ,é,)\h(_z)] + [Da,ﬁ,s,,\g(z) - Da,ﬁ,é,)\g(_z)}
22— Y, 2nfiﬁy&)\anz" - > 2”1%7;575,)\ bpzn
— Re — n=2 nO:ol —x Z 0.
2z — 22 (1- (—1)")F’;ﬁ7&)\anz" + 21 (1- (—1)")F’;ﬁ7&)\ bpzn

The condition should hold for all values of z, |z] = r < 1. Choosing the values of z on the
real positive axis, 0 < z =r < 1, and F’;ﬁy&)\ is real, we have

2,5} 00
21 =20 = 55 n = x(1 = (1070 g an = = 55 fan b x(1 = (1P g gy bur
= Re —= = > 0.
2- 5 (- (=1)™)Tk ;5 anr™t + > (- (=1)™)TE 4 s abarmt
n= n=

(2.5)

Letting » — 1~ and if the condition (2.4) does not hold, then the numerator in (2.5) is
negative. Thus the coefficient bound inequality (2.5) holds true when f € S}, ¢ (o, 5,0, A; X).
This completes the proof of Theorem 2. O

3 Distortion theorem and extreme points

In the theorem below we give distortion bounds for f in the class S}, ¢(c, 3,9, A; x).
Theorem 3 Let the functions f(z) defined by (1.3) be in the class f € St q(a, 3,6, X x),

then for |z| = r <1, we have

FE < A+ e+ ! - ”X|b1|}r2,

=
Na+p8-1)+1"C(5,2) L 2 2

and

()] = (1= ba)r - ! - ”X|b1|}r2.

1-Xx
[)\(a+6—1)+1]k0(5,2){ 2 2
The result is sharp.

Proof We prove only the left hand inequality, let f € S}, (e, 5,9, A; x). Taking the absolute
value of f(z), we have

()] = (1= ]baf)r — 22 {lan] + [bal}r™ > (1= |bi])r — 72 22 {lan] + [bnl}
— &, a+pB—1)(n— 1y a,n
= (1 - |b1|)7" - [)\(a+ﬁ71)f1]kc(6,2) 22 [)\( 8 1)(17;)+1] C( ) {|an| + |bn|}T2

(1—x)r? o [ [2n—x(1-(=D)")]
2 (1=l = mmmarees L, aag el

2n 1—(=1)"
+ BT bal} T
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= (1= i)~ e emy 3, ( 25,

+ 2= GO b, [} T5 555
> (1= b - g iress (1 i)
= (1= | = g mrems (78 — b0

The proof of the right hand inequality follows on lines similar to that of the left hand
inequality which completes the proof of Theorem 3. O

Denote clcoS}; ¢ (a, 3,6, A; x) as the closed convex hull of S}, ¢(a, 3,9, A; x). The following
result gives extreme points of clcoST; ¢ (o, B,0, A; X).
Theorem 4 A function f = h+ g € clcoSt (o, 5,0, \;x) if and only if f(z), can be
expressed in the form

fn(z) = Z (Xnhn(2) + Yogn(2)) (3.1)
where )
hi(z) =2, hp(z)=2z— 20 = x) z" (n=2,3,...),
20— (1 = (=1)"] [T s 0
2(1—x) —_

gn(z) =2+ 2" (n=1,2,3,...),

2n+x(1 = (=1)"]

k
Lo 5

F’;ﬁy&)\ is given by (1.7) and >, (X, +Yy) = 1, with X, > 0, Y,, > 0. In particular the

n=1
extreme points of St ¢(a, 3,6, X;x) are hy and g,,.
Proof. Let f be of the form (3.1). Then we have

o0

= 2(1 - x)
7 ; (o ¥)2 ; [2n — x(1 — (=1)"] Fi,ﬁ,&,)\’
= 2(1—x) n
+; 21+ x(1 — (=1)"] Flé,ﬁ,&,)\ "
L 2(1-x) X, 2"
n=2 [2n — x(1 — (=1)] ’Flé,ﬁ,m’
= 2(1—x)
n=1 [2n+x(1—(-1)"]

o0

+

Yoz".

k
Faﬁ,m’

Furthermore, let
2(1 - x)

20— x(1 = (=D)"] [T} 55

X, 2"

lan| =

and 2(1 )
— X
|bn| =

20+ x(1— (=D [TF 55

Y, z".
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Applying Theorem 2, gives

2o x(1— (D |0h pn| & Brex(— (1) [Dh ]
2 =y ol 2 20— o
20— x(1 = (=1)"]|T% 5 2(1 —
= Z 2(1—x) - )\’ (X) k Kn
n—=2 X [2n — x(1 — (=1)"] Fa,ﬁ,&)\’
> [2n+x(1 - (=1)"] Fi,ﬁ,s,A’ 2(1— )
t2 200 o

20+ x(1 = (1)) [T% 55|
:Z Xn+z Y,=1-X1<1,
n=2 n=1

and so f,, € clcoST,¢(a, 3,6, A; x).
Conversely, suppose that f,, € clcoSt¢(a, 3,6, X; x). Setting

20— x(1 = (=1)") % 5 5] an]
X, = =% n=23,..),
2+ x(1 - <—1>"]7r’;,ﬁ,5,A] ax|
Y, = IO n=1,23,..)
and define X3 =1— > X, + > V,.
n=2 n=1
Therefore,
2)=2z— Z lan|z™ + Z |bn|Z"
n=2 n=1
> 2(1 — ) Xn > 2(1 — x)Yn
=z - S (1-x) n
n=2 [2n—x(1 —(=1)"] FZ B8, n=1 [2n+x(1—(=1)"] FZ,M,A
SR DEANERES S AAER
n=2
Z )+ Yngn(2)] .
as required. O

4 Convolution and convex combination

For our next theorem, we need to define the convolution of two harmonic functions. For
harmonic functions of the form

2)=z— Z anz" + Z byz",  |b1| < 1, (4.1)
n=2 n=1
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and

2)=z-Y A"+ Bz (A, >0,B,>0), (4.2)

we define the convolution of two harmonic functions f and G as

(f*G)(2) = f(2) xG(2) =2 = > anAnz"+ > bpB,Z". (4.3)

Using this definition, we show that the class S§;4(cv, 3,6, A; x). is closed under convolution.
Theorem 5 For 0 <o <y <1, let f € S*—Hs(a,ﬁ, 5, \;x) and G € S*—Hs(a,ﬁ, 5, \;0). Then
[*GeShg(a,B,0,\x) C Sygla, 8,0, \9).
Proof. Let the function f(z) defined by (4.1) be in the class Sj;g(a, 3,6, X; x) and let the
function G(z) defined by (4.2) be in the class S};¢(a, 3,6, A\;4). Then the convolution f*G
is given by (4.3). We wish to show that the coefficients of f*G satisfy the required condition
given in Theorem 1.

For G € Sjg(a,B,6, A1) we note that 0 < A, < 1 and 0 < B, < 1. Now, for the
convolution function f * G we obtain

Z [2n — x(1 = (=1)"]|T% g.s.| lan]An + Z [2n + x(1 = (=1)"]|T' 55| [bn| B
n=2 n=1
Z [2n — x(1 = (=1)"]|T% g.s5.a] lan] + Z [2n + x(1 = (=1)"]|T% 55| bn]
<51y, "

since 0 < ¢ < y < 1 and f € Sig(a,8,0,A;x). Therefore f * G € Syq(a,3,0,Ax) C
Stg(a, 8,6, X;1), since the above inequality bounded by 2(1—x) while 2(1—yx) < 2(1—4).
This completes the proof of Theorem 5. O

Now, we show that the class Sy 4(a, 8,6, A; x) is closed under convex combinations of
its members.

Theorem 6 The class St;q(a, 3,6, \; x) is closed under convex combination.
Proof. Fori=1,2,...,let f; € S},¢(a, 3,6, A; x), where f; is given by

o0 o0
2) :Z_Z |an, z"—i-z |bn, |27
n=2 n=1

Then by using Theorem 1, we have

, (an, >0;b,, >0; z€ V).

> [2n—x(1 = (=1)"]
2(1-x)

Fi,ﬁ,é,)\’ ©  [2n4+x(1 - (=1)"] Fi,ﬁ,&,)\’

O,
| 30—

bl <1

(4.4)

n=2 n=1

o0
For Y t; =1,0<t; <1, the convex combination of f; may be written as
i=1

i tifi(z):z—i (Z t; |am>z +Z (Z ti|bni|>2"

=1 n=2 1=1
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Then, by using (4.4), we have

o 20— x(1 = (~1)"] [0 o] /2
2 2(1 - x) (Z tm"i)

n=2 =1

2n + x(1 - (=1)"

+§: [ Flfy,g,s,,\’ i Hlb
n=1 2(1-x) i=1 o

o [ss rore- e VPPN I R Ul I g0 |
== ) ani mn;
i=1 n=2 2(1-x) n=1 2(1-x)
i=1
and this is the necessary and sufficient condition given by (2.4) and so
Z tlf’t(z) € S;IS(aa 65 55 )\7 X)
i=1
This completes the proof of Theorem 6. O
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