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Abstract Recent studies have shown that independent identical distributed Gaussian
random variables is not suitable for modelling extreme values observed during extremal
events. However, many real life data on extreme values are dependent and stationary
rather than the conventional independent identically distributed data. We propose a sta-
tionary autoregressive (AR) process with Gumbel distributed innovation and characterise
the short-term dependence among maxima of an (AR) process over a range of sample
sizes with varying degrees of dependence. We estimate the maximum likelihood of the
parameters of the Gumbel AR process and its residuals, and evaluate the performance
of the parameter estimates. The AR process is fitted to the Gumbel-generalised Pareto
(GPD) distribution and we evaluate the performance of the parameter estimates fitted
to the cluster maxima and the original series. Ignoring the effect of dependence leads to
overestimation of the location parameter of the Gumbel-AR (1) process. The estimate
of the location parameter of the AR process using the residuals gives a better estimate.
Estimate of the scale parameter perform marginally better for the original series than the
residual estimate. The degree of clustering increases as dependence is enhance for the AR
process. The Gumbel-AR(1) fitted to the threshold exceedances shows that the estimates
of the scale and shape parameters fitted to the cluster maxima perform better as sample
size increases, however, ignoring the effect of dependence lead to an underestimation of
the parameter estimates of the scale parameter. The shape parameter of the original
series gives a superior estimate compare to the threshold excesses fitted to the Gumbel
distributed Generalised Pareto ditribution.
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1 Introduction

Extreme value theory as one of the most important statistical discipline has been applied in
various fields, from atmospheric chemistry to environmental sciences to financial econometrics.
The distinguishing feature of extreme value analysis is quantifying the stochastic behaviour of
maxima (or minima) and the assessment of extremal behavior of random variables. Previous
studies most time focus on independently and identically distributed random variables to con-
sider the statistical property of their maxima (or minima) using parametric models [1]. It is
straightforward under the independence assumptions to compute the likelihood function and
estimate the parameters using the maximum likelihood estimators. However, due to temporal
dependence, short-range dependence of extremes that leads to clusters of observations usually
arise and the independence assumption of Extreme Value Theory no longer holds. Hence, an
appropriate theoretical approach is needed to analyse the extremes of dependent series.

In recent years, evolving extreme value models have attracted considerable attention in
literatures by investigating the degree of clustering cause by dependence of extreme values.
The extension of extreme values to time series can be achieve by inducing dependence in the
underlying state of the extreme value process. One approach to capture such dependence is to
consider an autoregressive process for the model parameters of the extreme value distribution
using a state space representation, see [2]. Through simulation study, Prado and Lopes [3]
generated various Autoregressive state-space models using structured prior distributions to
assess the performance of sequential filtering and parameter learning. Smith [4] also considered
a class of max-stable processes approach and provides some application of the max-stable classes
for the extreme of financial data. Toulemonde at al. [5] proposed a linear Gumbel distributed
Autoregressive (AR) model using the logarithm of a positive α-stable random variable and
the objective was to extend linear Autoregressive model to capture temporal dependence for
Gumbel distributed maxima.

In this paper, we characterise the behaviour of the parameter estimates of an autoregressive
process with Gumbel distributed innovation. Dependence is induce in the autoregressive process
through the linear filtering of the Gumbel distributed innovation. We begin with the Generalised
Extreme Value (GEV) model with time dependence which is induced by an autoregressive
process having Gumbel innovations. The GEV distribution with location, scale and shape µ, σ,
ξ respectively commonly use for the analysis of maxima of some large set of random variables
is given by

G(z) = exp

{
−

[
1 + ξ

(
z − µ

σ

)]− 1
ξ

}
, (1)

where σ > 0 and 1 + ξ z−µ
σ

> 0. The subset of Eq. (1) with ξ = 0, which is interpreted as the
limit of G(z) as ξ → 0, is known as the Gumbel distribution with normalized maxima from
GEV with light-tailed which is given as

G(x) = exp

[
− exp

(
−x− µ

σ

)]
,−∞ < x < ∞. (2)

Let αt be a stationary time series process with innovation following the Gumbel distribution
given in Equation (2), therefore

x = µ− σ log(− log αt). (3)
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If a time-dependence that follows a Gumbel distribution exists in a time series realisation,
then Equation (3) provides a better approximation to the underlying process than the Gumbel
distribution assuming time independence and Equation (3) is therefore useful in describing the
sensitivity of the estimates of the parameters of the Gumbel distribution and of the GPD fitted
to both the cluster maxima and to the original series.

If Gumbel distributed maxima are dependent, but this dependence is not recognised, what
will happen to the resulting estimates of the Gumbel parameters? The main objective of this
paper is to use a time-varying linear filtering operation to generate an autoregressive process
with Gumbel innovations and to assess the performance of the resulting parameter estimates
of the autoregressive process for different sample sizes with varying degrees of dependence. We
also examine and compare the performance of the parameters of the GPD fitted to the cluster
maxima and to the original series.

The rest of the paper is organised into the following sections: Sect. 2 which is divided
into two subsections is the methodological aspects of the maximum likelihood estimates that
shows the derivative of the parameters for the Gumbel distribution and the GPD under the
maximum likelihood estimator. Section 3 presents the derivation of the model specification for
the Gumbel-AR model through the linear filter operation. Section 4 presents the simulation
study. Section 5 presents the results and discussion. A brief summary of conclusions from the
study is given in Sect. 6.

2 Methodological Aspects

2.1 Generalized Extreme Value Distributions

The GPD is a distribution with scale, σ, and shape, ξ, parameters respectively and is use to
model maxima above a given threshold, u. MLEs of the parameters are asymptotically normal
and asymptotically efficient in many cases and therefore are preferred in the estimation of both
σ and ξ. We proceed by stating the generalised Pareto distribution and show how generalised
extreme value distribution and the GPD models are related before deriving the ML estimate
of the GPD.

Cole [1] define a sequence X1, X2, · · · , Xn of independent and identically distributed ran-
dom variables with common distribution function, F , that follows the GEV distribution in
Equation (1), as a GPD distribution if

Mn = max{X1, · · · , Xn}

so that
Pr{Mn} ≈ G(x)

and for any reasonable large threshold u, we define the distribution function of (X − u), con-
ditional on X > u, as approximately

H(z) = 1−
(

1 +
ξz

σ̂

)− 1
ξ

, (4)

which is defined on {z : z > 0} and (1 + ξz
σ̂

) > 0, where σ̂ = σ + ξ(u−µ) and z is the threshold
excess. Equation (4) is call the GPD with scale and shape parameters σ and ξ respectively.
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For the transformation from GEV to GPD, lets denote an arbitrary term in the sequence
X1, X2, · · · , Xn by X. Then the GPD is given as

Pr{X > u + z|X > u} =

[
1 +

ξz

σ̃

]− 1
ξ

, (5)

where σ̃ = σ + ξ(u− µ) and z is the excess above a given threshold.
An important parameter in extreme value theory is the extremal index. The extremal index

measure the degree of clustering of extreme observations [6]. Let (Yj),−∞ < j < ∞, be a
strictly stationary sequence and θ ∈ (0, 1) a non-negative number. Assume that for every τ > 0
there exists a sequence (un) such that

lim
n→0

nF (un) = τ (6)

and
lim

n→∞
Pr(Mn ≤ un) = e−θτ . (7)

Then θ is called the extremal index of the sequence (Yj). Unless the extremal index, θ, is equal
to one, the limit distributions for stationary and independent sequences are not the same.
Clustering in observations signify the existence of dependence in the sequence of observations.

The derivation of the GPD from the GEV makes the dependence of the GPD parameters
on the threshold, u, obvious. The parameters of the GPD of threshold excesses are determined
by those of the corresponding GEV distribution and in particular, the shape parameter of the
GPD is equal to that of the associated GEV. Let x1, x2, . . . , xn be a sequence of observations
of independent random variables which are the exceedances above a threshold,u. The log-
likelihood function of the GPD is derived from taking logarithm of the joint density function.
Let nu be the number of observations above the thresholds u. Then the log-likelihood function
of x1, x2, . . . , xn of the i.i.d Generalised Pareto random variables is given by

log L(σu, ξ|X) = −nu ln σu −
(

1 +
1

ξ

) nu∑
i=1

ln

[
1 + ξ

(
xi − u

σu

)]
, (8)

with
[
1 + ξ

(
xi−µ
σu

)]
> 0 and ξ 6= 0. The constraint implies x < µ − σu/ξ. When ξ = 0, the

log-likelihood function can be derived as

log L(σu|X) = −nu ln σu −
nu∑
i=1

(
xi − u

σu

)
(9)

where ξ = 0.

3 Model Specification for the Gumbel-AR(1)

Define the autoregressive model with a first order AR process (Gumbel-AR(1)) as

αt = φαt−1 + ηt, ηt ∼ G(x), t = 1, 2, . . . , n (10)
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where αt is the output of the linear filter of the innovation ηt which is distributed as the
Gumbel random variable in Eq. (2). For the Gumbel-AR(1) in Equation (10) to be stationary,
the |φ| < 1.

The error form (innovation) ηt in Eqquation (10) is suppose transformed to the process αt

by what is called a linear filter. The linear filtering operations simply takes a weighted sum of
previous innovations ηt.

Hence, for the Gumbel-AR(1) in Equation (10), we have

αt = φαt−1 + ηt

= φ(φαt−2 + ηt−1) + ηt

= φ2αt−2 + φηt−1 + ηt

= φ3αt−3 + φ2ηt−2 + φηt−1 + ηt + · · · .

provided |φ| < 1, the value of φk will get smaller, so that from Equation (10) we obtain

αt = ηt + φηt−1 + φ2ηt−2 + φ3ηt−3 + · · · . (11)

Thus, our linear filtering of the time-dependent Gumbel distribution is base on the fact that
Equation (11) holds.

3.1 Bootstrapping the Gumbel-AR(1) Model

Bootstrap is a computer-based method for assigning measures of accuracy to statistical esti-
mates. Let αt be a stationary time series realisation at time t with n observations that is
distributed as the Gumbel-AR(1) in Equation (10). The bootstrap, like the Jackknife is a re-
sampling of the data points in αt. While the Jackknife considers n new data sets, each contains
all the original data points less 1 observation, the bootstrap uses nboot data sets, each containing
n observations which are obtained by random sampling of the original set of n observations.
The random sampling is done with replacement, and the probability that an observation is
picked is 1/n [7].

Efron [8] pioneered the bootstrap geared towards independent data. Smith [9] recognised
that if one applies independent identical distributed bootstrap to data that are dependent,
inconsistency follows. Because of the total data scrambling induced by i.i.d bootstrap, all
dependence information will be lost. For the Gumbel-AR(1) model in Equation (10), the
standard bootstrap method cannot be applied because our objective is to retain the dependence
structure of the model. [10] first introduced the block bootstrap to be use for dependent data.
The block bootstrap method propose by [11] is use in this study. The basic idea of the block
bootstrap is closely related to the i.i.d non-parametric bootstrap. The two procedures are
based on drawing observations with replacement. In the block bootstrap however, instead of
single observations, blocks of consecutive observations are drawn. This is done to ensure the
dependence structure of neighbourhood observations are captured.

4 Simulation Study

In this section, simulation study is done to examine the behaviour of the estimators of the
Gumbel-AR(1) model. We also examine the estimates of the parameters of the Gumbel
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GPD fitted to the cluster maxima and the original series. Simulation will be perform for
n ∈ {300, 500, 1000, 3000, 5000} and φ ∈ {0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}, and with-
out loss of generality we set µ = 0 and σ = 1.

For each n and φ, 10,000 bootstrap samples will be generated from the Gumbel-AR(1)
model. As the value of φ increases, dependence is enhance. The value of φ is steadily increase
to assess the sensitivity and consistency of the respective estimate of the model parameters to
changes in the degree of dependence for a reasonable range of sample sizes. For each combination
of n and φ, Augmented Dickey Fuller (ADF) will be perform on the respective models to check
if they are indeed stationary. Furthermore, for each sample size n and φ, we estimate µ and σ
for the Gumbel-AR(1) and its residuals using the maximum likelihood estimate.

Having establish the presence of dependence in the autoregressive, we proceed to decluster
the data and then fit the Gumbel Generalised Pareto distribution to the threshold excesses. An
important property of the extremal index estimator use for threshold selection is the threshold
stability plot. The threshold stability plot examines varying threshold for invariance of the
extremal index to change in threshold. For every given threshold, the extremal index is com-
puted. In other to decluster the Gumbel-AR(1) model, the declustering scheme propose by [12]
will be use. The method involve estimating the extremal index of the sequence of excesses
above a given threshold of the respective models before the identification of independent clus-
ters of exceedances above the threshold. A suitable threshold for the declustering is indicated
by interexceedance times which correspond to inter-cluster times lying close to a diagonal line
indicated by a quantile-quantile plot.

After declustering the data, the exceedances of the thresholds are then use to estimate the
extremal index and hence, the parameters of the GPDgumbel, ξ and σ, can then be estimated
for both the cluster maxima and for the original series.

5 Results and Discussion

In this section, results and discussion of the simulation study are presented in Table 1 to
Table 10.

Table 1: Gumbel-AR(1) Lag 1 Autocorrelation

φ

n 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

300 0.036 0.091 0.189 0.296 0.398 0.495 0.588 0.697 0.791 0.896
500 0.034 0.090 0.186 0.293 0.391 0.493 0.573 0.696 0.788 0.887
1000 0.020 0.088 0.170 0.290 0.390 0.490 0.569 0.694 0.784 0.884
3000 0.011 0.064 0.160 0.281 0.385 0.482 0.561 0.690 0.778 0.875
5000 0.007 0.054 0.153 0.258 0.379 0.465 0.551 0.689 0.755 0.872

Table 1 give the lag 1 autocorrelation of the Gumbel autoregressive process. As the value
of φ increases, the autocorrelation increases for a fixed sample size. For constant φ value with
increasing sample size, the autocorrelation diminishes.
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Table 2: Gumbel-AR(1) Estimate of µ with Different Combination of n and φ with µ = 0

φ

n 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

300 0.6907 0.7513 0.7986 0.9570 1.1151 1.2822 1.3558 1.9687 3.1117 6.1317
500 0.6763 0.7173 0.7678 0.8996 1.1046 1.1312 1.3403 1.9120 3.0227 5.9336
1000 0.5262 0.6875 0.7332 0.8697 1.0048 1.1105 1.3272 1.9005 3.0202 5.8030
3000 0.5195 0.6300 0.6821 0.8037 0.9198 1.0873 1.3229 1.9001 3.0023 5.6065
5000 0.5183 0.5828 0.6459 0.7845 0.9138 1.0809 1.1445 1.8074 2.9751 5.5123

Table 3: Residual of Gumbel-AR(1) Estimate of µ with Different Combination of n and φ with
µ = 0

φ

n 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

300 0.0048 0.0049 0.0050 0.0051 0.0054 0.0056 0.0057 0.0060 0.0061 0.0066
500 0.0046 0.0047 0.0048 0.0050 0.0053 0.0055 0.0056 0.0059 0.0060 0.0064
1000 0.0045 0.0046 0.0047 0.0049 0.0051 0.0052 0.0054 0.0056 0.0058 0.0060
3000 0.0039 0.0040 0.0041 0.0045 0.0046 0.0047 0.0049 0.0050 0.0053 0.0058
5000 0.0037 0.0039 0.0040 0.0044 0.0045 0.0046 0.0047 0.0049 0.0051 0.0057

Table 2 and Table 3 presents the estimate of the location parameter µ for the Gumbel-
AR(1) and its residual respectively. As dependence is increase, the estimate of the location
parameter of the autoregressive process and its residual increases for a fixed sample size. For a
fixed φ value, the estimate of the location parameter perform better as n increases. However, a
simultaneous increase in n and φ lead to a corresponding increase in the estimate of the location
parameter of the autoregressive process.

When φ ≥ 0.7, the estimate of the location parameter is quite large and unreasonable
therefore, when fitting data to autoregressive processes with Gumbel innovation without taking
the effect of dependence into consideration, the location parameter is overestimated.

Table 4: Gumbel-AR(1) Estimate of σ with Different Combination of n and φ with σ = 1

φ

n 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

300 0.0120 0.0122 0.0126 0.0127 0.0132 0.0136 0.0143 0.0160 0.0176 0.0250
500 0.0126 0.0127 0.0130 0.0139 0.0140 0.0148 0.0152 0.0164 0.0198 0.0255
1000 0.0127 0.0129 0.0135 0.0140 0.0141 0.0153 0.0154 0.0168 0.0207 0.0286
3000 0.0128 0.0132 0.0136 0.0142 0.0144 0.0155 0.0156 0.0170 0.0248 0.0307
5000 0.0129 0.0133 0.0139 0.0145 0.0147 0.0156 0.0162 0.0174 0.0260 0.0309

Table 4 and Table 5 give the estimate of the scale parameter for the Gumbel-AR(1) and
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Table 5: Residual of Gumbel-AR(1) estimate of σ with different combination of n and φ with
σ = 1

φ

n 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

300 0.0118 0.0121 0.0123 0.0125 0.0127 0.0129 0.0131 0.0132 0.0137 0.0143
500 0.0120 0.0122 0.0124 0.0126 0.0128 0.0130 0.0132 0.0134 0.0139 0.0145
1000 0.0123 0.0124 0.0125 0.0127 0.0129 0.0131 0.0133 0.0136 0.0141 0.0146
3000 0.0124 0.0125 0.0126 0.0128 0.0130 0.0133 0.0134 0.0138 0.0145 0.0149
5000 0.0125 0.0126 0.0128 0.0130 0.0132 0.0134 0.0136 0.0140 0.0147 0.0152

its residual respectively. The estimate of the scale parameter increases for a fixed sample size
with varying φ and a fixed φ with varying sample size respectively for both the original series
and its residual.

From Table 2, as dependence is increase, the estimate of the location parameter becomes
larger. However, for a fixed φ value with increasing sample size, the estimate of the location
parameter decreases. From Table 7 and Table 8, when φ is increase for a constant sample size,
the estimate of the scale parameter increases. Same situation is observe as the sample size
increases for a fixed φ value. A simultaneous increase in n and φ increases the estimate of the
scale parameter.

From result presented in Table 2, ignoring the effect of dependence in the model increases
the estimate of the location parameter. For a fixed dependence level with an increasing sample
size, the estimate of the location parameter improves; but an increase in both n and φ results
in over estimating the location parameter. Results shown in Table 3 suggest that estimating
the location parameter using the residuals of the Gumbel-AR(1) gives a superior estimate.

Table 6: Threshold Used to Decluster the Gumbel-AR(1) for Sample Size, n, with φ Degree of
Dependence

φ

n 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1000 0.562 0.585 0.749 0.787 0.920 1.093 1.347 1.706 2.827 5.515
3000 0.566 0.610 0.753 0.795 0.945 1.219 1.534 1.817 2.856 5.700
5000 0.575 0.653 0.764 0.830 0.982 1.220 1.539 1.961 2.962 5.818

For the estimate of the scale parameter presented in Table 4, as φ increases, the estimate
perform better. Similarly, at a constant φ value with increasing sample size, the estimate of
the scale parameter perform better. From result presented in Table 5, we see that estimating
the scale parameter using the original series gives a marginally better estimate than using the
residual of the Gumbel-AR(1).

Table 6 shows the threshold use to decluster the Gumbel-AR(1) model. After declustering
the data using the automatic declustering scheme proposed by [12], the exceedances of the
thresholds are then used to estimate the extremal index and hence, the parameters of the
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GPD can then be estimated from the resulting declustered series. A suitable threshold for the
declustering is indicated by interexceedance times which correspond to inter-cluster times lying
close to a diagonal line which is indicated by a quantile-quantile plot. From Table 6, for a
fixed sample size and an increasing φ value, the threshold show an increasing trend. As the
sample size increases for a fixed φ value, the threshold stability increases; also, increasing n
and φ simultaneously increases the threshold use for declustering. Thus, a high dependence in
the model implies that a high threshold will be use in declustering the data and an increase in
sample size leads to a corresponding increase in the threshold use for declustering.

Table 7: Estimates of the Extremal Index for Sample Size, n, with φ Degree of Dependence

n φ = 0 φ = 0.1 φ = 0.2 φ = 0.3 φ = 0.4 φ = 0.5 φ = 0.6 φ = 0.7 φ = 0.8 φ = 0.9

1000 1.0000 0.9449 0.9176 0.7513 0.7454 0.7337 0.5243 0.4813 0.3176 0.2896
3000 1.0000 0.9784 0.9773 0.8853 0.8298 0.7339 0.5999 0.5096 0.4743 0.2943
5000 1.0000 0.9879 0.9833 0.9043 0.8428 0.7903 0.6225 0.5209 0.4839 0.3467

Table 8: Independent Clusters for Sample Size, n

φ

n 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1000 164 63 141 94 94 101 65 63 19
3000 337 212 161 170 194 215 89 154 51
5000 390 448 329 349 220 259 175 147 91

The estimate of the extremal index, θ, for the Gumbel-AR(1) is given in Table 7. The
extremal index is an important parameter use in measuring the degree of clustering of extremes
in a stationary process and θ ∈ [0, 1], where θ = 1 indicates that exceedances occur singly
and θ < 1 implies that exceedances occurs in clusters. The case θ = 0 is rare, although not
impossible and it entails that sample maxima of the Gumbel-AR(1) are of smaller order than
sample maxima of the associated independent Gumbel distribution. Clustering is an indication
of dependence in the sequence of observations. From Table 7, as dependence is enhance for
a fixed sample size, the degree of clustering increases. However, for a fixed dependence level
with increasing sample size, the degree of clustering decreases and the model tend towards an
i.i.d model. Consequently, the number of independent clusters increases as the sample size
increases. When φ = 0, the extremal index is one indicating that the Gumbel-AR(1) is indeed
i.i.d. Enhancing the dependence level for an increasing sample size leads to a corresponding
increase in the degree of clustering.

After declustering the Gumbel-AR(1), the GPD-AR(1) is assumed to be independent and
identically distributed, and varying φ have no impact whatsoever on the declustered data.
Therefore, our interest is now to focus on consistency for an increasing n only after declustering
the Gumbel-AR(1).

Table 8 gives the number of observations that exceeds the respective threshold use in esti-
mating the extremal index. Out of the original series n, we have identified serial dependence
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in the data (with the exception of φ = 0 with extremal index 1), and therefore, the threshold
excesses are not independent and in fact correspond to the number of independent clusters for
the different sample sizes shown in Table 8

Having decluster the Gumbel-AR(1), we proceed to fit the generalised Pareto distribution
and estimate the parameters, ξ and σGPDgumbel

, of the GPD-AR(1) use to describe the condi-
tional distribution of the cluster maxima given that it exceeds the threshold use for declustering.
We compare the parameter estimates of the GPD-AR(1) model fitted to the cluster maxima
with those obtained by fitting GPDgumbel to the Gumbel-AR(1) before declustering.

The MSE of the parameter estimates of the shape parameter, ξ, fitted to the cluster maxima
and the original series is shown in Table 9. As the sample sizes increases, ξ performs better for
both the GPD-AR(1) and Gumbel-AR(1), however, for any given sample size, the MSE of the
Gumbel-AR(1) is smaller than that of the corresponding GPD-AR(1).

Table 9: MSE for Estimate of ξ Fitted to GPD-AR(1) and Gumbel-AR(1) for n and φ

φ

n 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1000 0.0829 0.1526 0.0905 0.0854 0.0849 0.0642 0.0639 0.1555 0.0833
GPD-AR(1) 3000 0.0668 0.0405 0.0547 0.0451 0.0737 0.0593 0.0576 0.0349 0.0556

5000 0.0378 0.0187 0.0041 0.0336 0.0431 0.0492 0.0228 0.0344 0.0008

1000 0.0536 0.0627 0.0417 0.0492 0.0662 0.0492 0.0524 0.0442 0.0352
Gumbel-AR(1) 3000 0.0408 0.0301 0.0327 0.0257 0.0427 0.0447 0.0437 0.0301 0.0124

5000 0.0293 0.0138 0.0010 0.0169 0.0134 0.0378 0.0137 0.0220 0.0002

Table 10: Estimate of σGPDgumbel
fitted to GPD-AR(1) and Gumbel-AR(1) for n and φ

φ

n 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1000 0.0079 0.0068 0.0069 0.0079 0.0081 0.0102 0.0094 0.0114 0.0124
GPD-AR(1) 3000 0.0092 0.0082 0.0089 0.0084 0.0083 0.0116 0.0124 0.0124 0.0136

5000 0.0096 0.0088 0.0122 0.0106 0.0095 0.0130 0.0129 0.0183 0.0190

1000 0.0074 0.0063 0.0063 0.0069 0.0073 0.0091 0.0076 0.0097 0.0119
Gumbel-AR(1) 3000 0.0081 0.0076 0.0079 0.0073 0.0078 0.0095 0.0108 0.0110 0.0129

5000 0.0082 0.0087 0.0099 0.0091 0.0079 0.0113 0.0138 0.0137 0.0152

The estimate of σGPDgumbel
fitted to the cluster maxima and the original series is shown in

Table 10. After declustering the data and the Gumbel-generalised Pareto distribution is fitted to
the independent cluster maxima and to the Gumbel-AR(1), the result show that as the sample
size increases, the parameter estimate, σGPDgumbel

, fitted to both the cluster maxima and to
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the original series perform better. A comparison of the estimate of σGPDgumbel
between the

corresponding GPDgumbel-AR(1) and the Gumbel-AR(1) indicate that the estimate, σGPDgumbel
,

of the GPD-AR(1) are larger than the corresponding σGPDgumbel
estimate of the Gumbel-AR(1).

Real Data Problem

We now use a real data example to identify and classify the temporal structure of extreme values
in the Gumbel AR(1) model. Furthermore, we show how clusters as a result of dependence
influence the parameter estimates of the autoregressive process and the Gumbel-Generalised
Pareto distribution.

 
Figure 1: Scatter Plot of Daily Maximum Wind Speeds

In this example, we use an environmental dataset to show the link between light tailed
maxima stemming from an extreme value distribution with Gumbel distributed maxima. The
dataset consist of 327 daily maximum wind speeds (m/s) recorded in a specific location in
Canada in 2012.

The catastrophe precipitated by Hurricanes Katrina and Rita in August and September
2005, the extraordinary hurricane season of 2004 in which five hurricanes made landfall in
Florida, and the May 1999 outbreak of damaging tornadoes in Oklahoma highlight the sig-
nificant and growing risks to society of extreme wind speed hazards. Extreme wind storms
can cause severe damage leading to huge economic losses. Consequently, understanding the
behaviour of the parameter estimates of maximum wind speeds is imperative in order to make
predictions of wind storm and proffer ways of mitigating its consequence.

A scatter plot of the daily maximum wind speeds is displayed in Figure 1. It seems to show
a linear decrease of maximum wind speeds. The autocorrelation for the wind speed data is
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Figure 2: Goodness of Fit Test for Wind Speed Dataset to the Gumbel distribution

0.388 showing a positive dependence. The Augmented Dickey Fuller gives a probability value
of 0.01 signifying that the wind speeds dataset is stationary.

Diagnostic plots for assessing the goodness of fit of the Gumbel model fitted to the data
are shown in Figures 2. The plots show a linear relationship, which indicates that a Gumbel
fit seems to be reasonable. To get more information on the dependence structure and fit the
observed data to a time series model, the sample autocorrelation function and sample partial
autocorrelation function are plotted in Figure 3 and 4 respectively. We see from Figure 3
and 4 that the sample autocorrelation function decays exponentially and the sample partial
autocorrelation function mostly cuts of at lag 1 suggesting an autoregressive model of order 1
for the maximum daily wind speeds dataset.

The estimator of φ is φ̂ = 0.3872 which further confirms that the dependence does exist
among daily maxima wind speeds in the observed datasets. The maximization of the Gumbel
log- likelihood for this dataset gives the estimates of the location and scale parameters as
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Figure 3: Sample ACF of Daily Maximum wind Speed Series

 
Figure 4: Sample PACF of Daily Maximum Wind Speed Series

(µ̂; σ̂) = (5.6423; 1.8319). The estimates of the location and scale parameter for the residuals of
the wind speeds data are (µ̂; σ̂) = (−0.9379; 1.7591).
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Figure 5: Quantile-Quantile Plot for Wind Speed Data Set

Since we are interested in finding the clustering tendencies of the extreme values, the thresh-
old used for declustering the dataset is chosen such that the extremal index, the shape and scale
parameters of the generalised Pareto distribution are invariant to a changes in threshold use
for declustering. This leads to a threshold of 8.4. The Q-Q plot in Figure 5 is used to check the
goodness of fit of our model for cluster occurrence. By these plots, we can be reassured that the
chosen threshold of 8.4 gives a good fit of the model to the wind speeds data. The estimate of
the extremal index for this threshold is 0.7578 and the average cluster size is 1/0.7578 = 1.3196.
This implies that wind tends to be heavy on consecutive days but very strong wind tend not
to last longer than two consecutive days.

We can now decluster the wind speeds dataset. So of the observed dataset which is of length
327, there are 63 independent exceedances of the threshold 8.4. We now proceed to estimate
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the parameters of the Gumbel Generalised Pareto Distribution used to describe the conditional
distribution of a cluster maxima given that it exceeds the threshold used to decluster the dataset
is given as (σ̂GPDgumbel

; ξ̂) = (2.3501;−0.3542). The parameter estimates of GPDgumbel-AR(1)

fitted to the observed wind speeds dataset is given as (σ̂GPDgumbel
; ξ̂) = (1.8107;−0.2207). The

key difference between the fits is that the Generalised Pareto distribution is fitted to the cluster
maxima after declustering the dataset in the former, while the Generalised Pareto distribution
is fitted to the original dataset without declustering in the latter.

6 Conclusions

The study used Gumbel-AR(1) to characterize short-term dependence among maxima stem-
ming from light-tailed distributions over a range of sample sizes with varying degrees of de-
pendence. A simulation study done examine and compare the performance of the estimates
of Gumbel-AR(1) and GPDgumbel-AR(1) for the different sample sizes with varying degrees of
dependence.

The study found that estimating the parameters of the Gumbel autoregressive process of
order one, and ignoring the effect of dependence, the location parameter is overestimated. The
estimate of the location parameter of the autoregressive process using the residuals gives a better
estimate. The estimate of the scale parameter of the original series gives a marginally better
estimate than the residuals of Gumbel-AR(1). The degree of clustering increases as dependence
is enhanced in the autoregressive process. The number of independent observations increases
as sample size is increased for at a constant dependence level. When the effect of extreme value
innovation is ignored, we risk underestimating the scale parameter of the Gumbel generalised
Pareto distribution. Comparing the estimate of the shape parameter of the Gumbel-Generalised
Pareto distribution before and after declustering shows that the original series gives a better
estimate of the shape parameter for the autoregressive processes.
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