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Abstract In this paper, the application of the method of lines (MOL) to the Forced
Korteweg-de Vries-Burgers equation with variable coefficient (FKdVB) is presented.
The MOL is a powerful technique for solving partial differential equations by typically
using finite-difference approximations for the spatial derivatives and ordinary differ-
ential equations (ODEs) for the time derivative. The MOL approach of the FKdVB
equation leads to a system of ODEs. The solution of the system of ODEs is obtained
by applying the Fourth-Order Runge-Kutta (RK4) method. The numerical solution
obtained is then compared with its progressive wave solution in order to show the
accuracy of the MOL method.
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1 Introduction

There are many physical phenomena in engineering and physics which can be expressed by
some nonlinear partial differential equations (PDEs) [1]. However, most of them do not
have exact analytical solutions. Therefore, these nonlinear equations should be solved by
using approximation method [2].

In literature, weakly nonlinear wave propagation in a prestressed fluid-filled stenosed
elastic tube filled with a Newtonian fluid with variable viscosity fluid has been studied by [3]
by applying the reductive perturbation method and long wave approximation, the governing
equations. By employing the stretched coordinate of initial-value type and extending the
field quantities into the asymptotic series of order ε, where ε is a small parameter, the
nonlinear wave propagation in such medium is governed by the forced Korteweg-de Vries-
Burgers (FKdVB) equation with variable coefficient. The FKdVB can be written as

Uτ + µ1UUξ − µ2Uξξ + µ3Uξξξ + µ4 (τ )Uξ = µ (τ ) , (1)
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where ξ is a spatial variable, τ is a temporal variable, µ1, µ2, µ3, µ4 (τ ) and µ (τ ) are
the coefficients of nonlinear, dissipative, dispersive, variable coefficient and forcing term
respectively. The presence of forcing terms µ (τ ) and variable coefficient term µ4 (τ ) show
the presence of stenosis. The dissipative term −µ2uξξis caused by the effect of variable
viscosity. The coefficients of µ1, µ2, µ3, µ4 (τ ) and µ (τ ) are defined by [3] as
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α = 1.948, λθ = λz = 1.6, v = 1, c = 15.391, m = 0.1, G (τ ) = 0 and g (τ ) = sech (0.01τ ).
Here α refer to material constant, λθ is the initial circumferential stretch ratio, λz is the
initial axial stretch ratio, ν is kinematic viscosity, m is a mass of an artery and c is the scale
parameter.

The application of the MOL to the FKdVB equation (1) will be presented in this paper.
It is shown that the MOL approach of the FKdVB equation leads to a system of ODEs.
The solution of the system was obtained by applying the RK4 method. The solution of
the FKdVB equation that is obtained by using the MOL with progressive wave solution
conducted by Tay [3] is then compared in terms of its maximum absolute error at a certain
time τ .

2 The MOL

The MOL is a powerful method used to solve PDEs. It involves making an approximation to
the spatial derivatives and reducing the problem into a system of ODEs [4-6]. In addition,
this system of ODEs can be solved by using time integrator. The most important advantage
of the MOL approach is that it has not only the simplicity of the explicit methods [7] but also
the superiority (stability advantage) of the implicit ones unless a poor numerical method
for the solution of ODEs is employed. It is possible to achieve higher-order approximations
in the discretization of spatial derivatives without significant increases in the computational
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complexity. This method has wide applicability to physical and chemical systems modeled
by PDEs such as delay differential equations [8], two-dimensional sine-Gordon equation [9],
the Nwogu one-dimensional extended Boussinesq equation [10], the fourth-order Boussi-
nesq equation, the fifth-order Kaup–Kupershmidt equation and an extended Fifth-Order
Korteweg-de Vries (KdV5) equation [11].

In this paper, the spatial derivatives are firstly discretized using central finite difference
formulae as follows:
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where ξ is the spatial variable, τ is the temporal variable, j is the index denoting the spatial
position along ξ-axis and ∆ξ is the step size along the spatial axis. The ξ-interval is divided
into M points with j = 1, 2, . . . , M−1, M . Therefore, the MOL approximation of equation
(1) is given by
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Equation (5) is written as an ODE since there is only one independent variable, which is τ.

Also, equation (5) represents a system of M equations of ODEs. The initial condition for
equation (5) after discretization is given by

U (ξj, τ = 0) = U0 (ξj) , j = 1, 2, ..., M − 1, M. (6)

For the time integration, the RK4 method is applied. Thus, the numerical solution at time
τi+1 is
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Here ∆τ is the step size of the temporal coordinates.
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3 Progressive wave solution

The progressive wave solution of the FKdVB equation as given by [3] is
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where a is a constant. The phase function ζ can be expressed as
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4 Results and discussion

To test MOL on the FKdVB equation, we need the initial condition as follows:
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Figure 1 (a) gives the MOL solution of the FKdVB equation (1) with spatial parameters at
certain time τ , while Figure 1 (b) represents the progressive wave solution of the FKdVB
equation (1) with spatial parameters at certain time τ. The solution of the FKdVB equation
(1) with space ξ shows a decreasing shock profile propagating to the right with a decrease
in wave amplitude as time τ increases.

We then compute the absolute error between the progressive wave and MOL solutions
for each discretized spatial point at a certain time τ and later find the maximum absolute
error. The maximum absolute errors between the progressive wave and MOL solutions are
calculated based on the formula

L∞ =max |Uprogressive − UMOL| (12)

Table 1. gives the maximum absolute error between the progressive wave solution and MOL
solution. It shows the maximum absolute errors are in order of 10−6.

Table 1: Maximum absolute error of the FKdVB equation for different time τ at ∆τ = ∂ξ−3

Time, τ 0 10 20

L∞ 0 0.76506× 10−6 1 × 10−6

The computing time for progressive wave and MOL is found to be 3.435802 seconds
and 14.38130 seconds, respectively. The progressive wave is straight forward since we can
plot the function of progressive wave, U versus time, τ directly. It consists 2 steps of
operation where the input formula U (9) and ζ (10). Comparatively, MOL will be a little
bit complex. It consists 6 steps of operation. The derivatives have to be replaced by finite-
difference approximation to reduce it to the system of ODEs and calculate a, b, c and d in
equation (8) and new U (7).
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(a) MOL Solution of the FKdVB Equation
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Figure 1: Solutions of the FKdVB equation versus space ξ for different time τ at ∆ξ = 0.1
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5 Conclusion

The MOL was employed to solve the FKdVB equation. It involved replacing the spatial
derivatives in the PDE with finite-difference approximations and by doing that, the spatial
derivatives are longer stated explicitly in terms of spatial independent variables. This led
to a system of ODEs. The system was then solved by using the RK4 method. This paper
has described the effect of computational effort with respect to the accuracy of results.
The MOL solution of the FKdVB equation (1) was plotted versus its progressive wave
solution. From the observation, it was found that there were no differences for both MOL
and progressive wave solutions. The maximum absolute errors between both MOL and
progressive wave solutions at a certain time τ were computed. Results revealed that the
maximum absolute errors are in the order of 10−6 for ∆ξ = 0.1 and ∆τ = 1× 10−3. Hence,
it can be concluded that the FKdVB equation can be solved successfully using the MOL.
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