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Abstract Optimization is central to any problem involving decision making. The area

of optimization has received enormous attention for over 30 years and it is still popular
in research field to this day. In this paper, a global optimization method called Improved

Homotopy with 2-Step Predictor-corrector Method will be introduced. The method in-
troduced is able to identify all local solutions by converting non-convex optimization

problems into piece-wise convex optimization problems. A mechanism which only consid-
ers the convex part where minimizers existed on a function is applied. This mechanism
allows the method to filter out concave parts and some unrelated parts automatically.

The identified convex parts are called trusted intervals. The descent property and the
global convergence of the method was shown in this paper. 15 test problems have been

used to show the ability of the algorithm proposed in locating global minimizer.

Keywords Unconstrained optimization; convexity; globally convergent; homotopy.

Mathematics Subject Classification 65K05, 90C26

1 Introduction

All organizations seek efficient optimizer to help them in decision making such that the greatest
benefit can be obtained from the optimized solution. Problems such as portfolio optimization
often require investors to decide how much of wealth should be invested in order to get the
highest return in assets [1]. These problems can be formulated as a mathematical function
with or without constraints. A function can have more than one minimizer and these points
are called local solutions. A local solution can be found easily by using a local search method
such as Newton Raphson method with a good initial guess.

For a minimization problem, i.e, minimization of cost or risk, we seek to find a global
minimizer which has the lowest function value from all solutions such that the loss can be
most minimized. For a maximization problem, i.e, maximization of profit or return, a global
maximizer is pursued by an individual to obtain the highest benefit possible.
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Given a real valued function f(x) defined on a set X in Rn, the global minimization problem
to be considered is

min f(x), x ∈ X (1)

and we attempt to find the function value f∗ and a point x∗ ∈ X such that f∗ = inf f .
Global optimization is difficult, even in a one dimensional problem [2]. This is due to its non-

convex feasible region. When the objective function is non-convex, it is difficult to determine
whether a potential optimum found is global. Hence, a global optimization algorithm which is
able to identify an infallible bounds on all extremizers is very valuable. This kind of algorithm
can be traced back to 1970s.

Hansen [3] introduced an algorithm which applied the concept of interval analysis in 1979.
This algorithm was used to solve unconstrained univariate problems. Based on the results by
Hansen, the method proposed never fail to find the global minimizer if the first and second
derivatives of the function have a finite number of isolated zeros .

This method was improved by Hansen in 1980 to solve multi variable global optimization
problem. Hansen’s method is composed of four steps [4]. The first step applied an interval
version of Newton’s method to locate the stationary points. The second step eliminated the
parts which have greater function values than the smallest currently known function value.
Sub-boxes within the feasible region will be deleted in the third step if they have monotonic
property. The fourth step removes the sub-boxes which do not have a convex property.

Mohd [5] introduced a modified method from Hansen’s. Like Hansen’s, Mohd’s method
also deleted some or whole boxes which did not contain a minimizer. In [5], monotonicity test
and convexity test were applied. Besides that, the currently known lowest function value was
updated such that the part which has a greater function value can be deleted.

Mohd [6] later applied interval analysis to locate the region of attraction (ROA) of a function
such that the global minimizer can be found. ROA is a powerful tool to optimization problems.
When an ROA is recognized, we can always locate a minimizer in it by running a local search
method [7].

In this paper, Improved Homotopy with 2-Step Predictor-corrector Method (I-HSPM) will
be presented. Different from the methods discussed, I-HSPM does not apply interval analy-
sis. By adopting a different technique, I-HSPM reaches the same goal which is to bound all
minimizers. The details of I-HSPM will be shown in the following section.

2 Improved Homotopy with 2-Step Predictor-corrector Method (I-
HSPM)

I-HSPM is an improved method from Homotopy Optimization with Perturbation and Ensem-
bles(HOPE). HOPE is structured by three main parts, which are homotopy technique, pertur-
bation tool and a local search. Generally, the global homotopy optimization methods require
a big amount of computation and only applicable to the problems with small number of local
minimizers. However, the capability of HOPE was shown by [8] on multi extrema problems
such as 60 modal Sine function which has 60 local minimizers.

The basic concept of HOPE is to construct a simple auxiliary function with its minimizer
known. Then it will use that minimizer as the initial point to locate the next minimizer on
the homotopy function. A perturbation step will be applied to perturb the minimizers found
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so far in various direction. Those perturbed points are used as the next initial points to find
the following minimizers. These two steps will be repeated as it deforms the auxiliary function
continuously into the objective function. All the minimizers found will be stored in an ensemble.

HOPE was proved to outperformed Simulated Annealing (SA) on simple protein structure
prediction problems [9]. [8] stated that, SA method converges to a solution only when the
probability is almost one, while HOPE was able to converge even when the probability is less
than one.

Similar to HOPE, I-HSPM also composes of three components. We replaced the pertur-
bation tool with Intermediate Value Theorem(IVT) to change the characteristic of algorithm
from stochastic to deterministic. A stochastic or probabilistic global optimization method e.g.,
Simulate Annealing method, HOPE method have infinite processing cycles for which the prob-
ability of having visited a global solution is not 100% guaranteed while a deterministic global
optimization method will be computed in a countable number of iteration and yield a set of
solutions with all global optima included [10].

IVT was introduced by Bolzano in 1917 [11]. It is a special case called Bolzano’s Theorem.
IVT is a common concept used in numerical analysis to determine the existence of zeroes in
a function. In I-HSPM, it helps in identifying the existence of zeroes on the derivative of the
objective function. The IVT is stated as follows.

Theorem 1 If a function f is continuous on a closed interval [a, b] and f(a) and f(b) have
opposite signs, then there is a c in (a, b) for which f(c) = K.

Proof For proof of the theorem refer [12]. 2

Based on IVT, let K = 0, if f(a) and f(b) has opposite signs, then there exist a number c
in (a, b) such that f(c) = 0. Hence, we can conclude that, if sign change occurs between and
f ′(a) and f ′(b), then at least one extremizer will lie within the interval [a, b]. Such interval is
called the trusted interval. A trusted interval can be illustrated by a basin and works like an
ROA, it will always arrive at a minimum starting from any initial guess [6].

I-HSPM is able to locate all local minimizers under the premise that all trusted intervals can
be identified. IVT determines a trusted interval if the sub-interval fulfill the condition that has
a negative derivative function value is followed immediately by a positive derivative function
value. The following lemma shows the existence of at least a zero on the derivative function if
the sign changes occur.

Lemma 1 Let g = f ′ : [a, b] → R. If g is continuous and g(a) < 0 and g(b) > 0, then there
exists a c ∈ (a, b) such that g(c) = 0

Proof By using the concept of bisection method, let a sequence of intervals be

I0 ⊇ I1 ⊇ I2 ⊇ ...

such that In = [an, bn], f(an) < 0 < f(bn) and bn − an = b−a
2n

.
Then

lim
n→∞

b− a

2n
= 0.

Hence, we have liman = lim bn = c. As g is continuous, lim g(an) = lim g(bn) = g(c), with
g(an) < 0 and g(bn) > 0, ∀x. Hence, limn→∞ g(an) ≤ 0 and limn→∞ g(bn) ≥ 0. Thus,
0 ≤ g(c) ≤ 0 with g(c) = 0. 2
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If zero endpoints are produced, these sub-intervals will not be selected by IVT as trusted
intervals. However, minimizers might still exist within these intervals. This exclusion might
lead to failure in locating true global solution. Hence, the homotopy technique is introduced to
make sure this issue will not occur since if zero endpoints are produced on the target function,
an approximate interval can still be determined from its slightly shifted function.

Another attempt done by modified HOPE is called Homotopy with 2-Step Predictor-corrector
Method (HSPM) in 2014. HSPM can be considered as the precursor of I-HSPM, please refer [13]
for details. From the simulation of [14], we noticed the influence of a small value of λ is not
strong which causes HSPM to have a lot of unnecessary function evaluations. Hence, we opted
to start with larger values approaching 1 such as 0.9, 0.95 or 0.99 in I-HSPM.

The procedure of I-HSPM is as follows:

Algorithm 1: Algorithm I-HSPM

Construct a homotopy function, H(x,λ) by combination of target function and auxiliary
function.;
Set a closed interval, [a, b] for the homotopy function H. ;
Choose step sizes for st and s, where st is a step size for λ and step size s is used to
divide [a, b] into several subinterval.;
for λ = l, ..., 1 do

set k = 0, while a + sk ≤ b do
H ′(a + sk),;
k = k + 1;

end
determine subintervali := {ai, bi}, where ai is a negative function value followed by a
positive function value bi and i = 1, ..., m ;

end
for i = 1, ..., m do

run a local search method on f(x) and store the solution found in an ensemble.
end
Calculate the function value of endpoints and add into the ensemble.
Select the lowest function value from among the ensemble.

I-HSPM will first construct a homotopy function by using a simple auxiliary function and
the target function. The task of the auxiliary function in I-HSPM is not like in other methods
such as [8,15–18], which acted like a medium to transfer solutions successively from one local to
another better one. Here, the auxiliary function is used to find an approximate trusted interval
when the exact trusted interval failed to be bounded.

Next, set a value for step sizes st for the homotopy function process from l to 1 and s to
divide the closed interval [a, b] into several small parts. Then, we move to the first important
loop of I-HSPM, which is the identification part of the trusted interval. In this loop, all the
trusted interval will be determined as λ = l, ..., 1.

After we gather all the trusted intervals, we enter the second important loop, which is a
local search step. We will random select an initial point from each trusted interval and run a
local search to find its minimizer. Each trusted interval is guaranteed to produce at least one
minimizer. All the minimizers found will be stored in an ensemble.
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Finally, we compare the minimum function values from the minimizers contained in the
ensemble. Hence, the global minimizer which is the lowest function value will be identified.

3 Convexity of Trusted Interval

In a search for sufficient condition to guarantee maxima or minima, we are lead to a class
of functions called convex functions and a class of sets called convex sets [19]. Convexity is
important in optimization. In general, minimizing an arbitrary function is very difficult, but
if the objective function to be minimized is convex then things become considerably simpler
since every local optimal solution is global if the objective function is convex [20]. Besides
that, based on [21] the defining line in optimization isn’t between linearity and nonlinearity,
but convexity and non-convexity.

IVT technique enables I-HSPM to reduce a large non-convex optimization problem into
several smaller convex problems. IVT helps I-HSPM determines all the interval which contain
at least one minimizer. Trusted interval was credited in reducing the unnecessary function
evaluations since the local search step will be applied only on the trusted intervals found and
the same minimizer will not be located repeatedly. Since a trusted interval is expected to be
convex and due to this restriction, we can say that I-HSPM is able to identify the convex parts
from a non-convex feasible region.

From Section 2, a trusted interval can be determined by IVT when a negative function value
is followed by a positive function value. This interval can be represented by a convex basin.
The following lemma shows the convexity of the trusted interval.

Lemma 2 Let [a, b] ⊆ R. A function f on trusted interval [a, b] is strictly convex, if and only
if f ′(a) < f ′(b) and f ′(a) ∈ (−∞, 0) while f ′(b) ∈ (0,∞).

Proof Let [a, b] ⊆ R and a < x1 < x2 < x3 < x4 < b.
Assume a function f is monotonic decreasing on (a, x2) and monotonic increasing on (x3, b).
Then 0 > f(a) > f(x1) > f(x2) and 0 < f(x3) < f(x4) < f(b).

Hence f(x2)−f(x1)
x2−x1

< f(x4)−f(x3)
x4−x3

which implies f ′(a) < f ′(b).
Conversely, we will show the function is convex over a trusted interval. Let [a, b] ⊆ R and

a < x1 < x2 < x3 < x4 < b. f ′(a) < f ′(b) implies

f(x2) − f(x1)

x2 − x1
<

f(x4) − f(x3)

x4 − x3
.

Since f ′(a) ∈ (−∞, 0) then we can assume 0 > f(a) > f(x1) > f(x2).
Similarly for the condition f ′(b) ∈ (0,∞), then 0 < f(x3) < f(x4) < f(b).

Thus, function f is monotonic decreasing on (a, x2) and monotonic increasing on (x3, b), which
is convex. 2

Thus, Lemma 2 holds true and the trusted interval is convex. When a function is convex, it
is guaranteed to have a unique global minimum [22], and it can be found by various standard
methods. Hence all the local minimizers can be detected successfully by I-HSPM and thus a
true global minimizer can be known.
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4 Descent Property of I-HSPM and its Global Convergence

Analysis

Generally, an iterative algorithm which is guaranteed to generate a sequence of points converg-
ing to a limit point with any arbitrary initial point is said to be globally convergent. Here,
Zangwill’s global convergence theorem will be discussed. This theorem is treated as a unified
manner to the study of any iterative descent algorithm [23]. Zangwill’s main result is stated
below.

Theorem 2 Let A be an algorithm on X, and suppose that, given x0 ∈ X, the sequence {xn}∞k=0

is generated and satisfies xk+1 ∈ A(xk). Let a solution set Γ ⊂ X be given, and suppose that

1. the sequence {xn}∞k=0 ⊃ X a compact set.

2. there is a continuous function Z on X such that

(a) if x /∈ Γ then Z(y) < Z(x) for all y ∈ A(x).
(b) if x ∈ Γ then Z(y) ≤ Z(x) for all y ∈ A(x).

3. the mapping A is closed at all points of X \ Γ

Then the limit of any convergent subsequence of {xn}∞k=0 is a solution.

From the theorem above, two definitions follow immediately.

Definition 1 Let X be a set and x0 ∈ X a given point. Then an iterative algorithm A,
with initial point x0 is a set valued mapping A : X → X which generates a sequence {xn}∞k=0

according to xk+1 ∈ A(x), n = 0, 1, 2, ....

Definition 2 Let Γ be the solution set of a minimization problem. Given Γ ⊂ X and an
iterative algorithm A on X, a continuous real-valued function f : X → R is called descent
function if

1. x /∈ Γ then Z(y) < Z(x), ∀y ∈ A(x).

2. x ∈ Γ then Z(y) ≤ Z(x), ∀y ∈ A(x).

To show I-HSPM is globally convergent by Zangwill’s theorem, we need to show I-HSPM
has descent property such that the second condition can be fulfilled.

A descent algorithm in optimization is an algorithm that will move to the local minimizer
eventually regardless of the initial point used. Descent algorithm usually will generate a se-
quence {xn}∞n=1 which is monotonically decreasing to limn→∞ f(xn). With that sense, we have
the following lemma.

Lemma 3 Let the function f : R → R closed on the trusted interval [a, b] and the sequence
{xn}∞n=1 be generated by I-HSPM. Suppose f is monotonically decreasing on (a, x∗) and mono-
tonically increasing on (x∗, b), where x∗ is a minimizer. Assume a < xn < xn+1 < · · · < xm−1 <
xm < b. If

(a) x0 ∈ (a, x∗), and f(xn+1) < f(xn) or;

(b) x0 ∈ (x∗, b), and f(xm−1) < f(xm).

then I-HSPM is said to have the descent property.
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Proof Since the trusted interval is where the function has convex property thus it can be
assumed as a basin, where the function f is monotonically decreasing on the left hand side of
the minimizer and monotonically increasing on the right hand side of the minimizer.

For case (a), given xn < xn+1, then

f(xn+1) − f(xn)

xn+1 − xn

< 0,

hence f(xn+1) − f(xn) < 0, thus f(xn+1) < f(xn).
For case (b), given xm−1 < xm,

then
f(x(m))− f(xm−1)

xm − xm−1
> 0,

hence f(xm) − f(xm−1) > 0, thus f(xm > f(xm−1) and f(xm−1) < f(xm). Then I-HSPM was
shown has the descent property. 2

Based on the concept of Zangwill’s convergence theory, we yield the following theorem.

Theorem 3 Let I-HSPM be an iterative algorithm on a trusted interval X. If the sequence
generated by I-HSPM has a limit point x∗ ∈ Γ for any starting point x0 ∈ X, where Γ is a
solution set of a minimization problem, then I-HSPM is said to be globally convergent.

Proof We will show the sequence {xn}∞n=1 generated by I-HSPM has a limit point x∗ such that
xn → x∗ as n → ∞. Suppose f is a continuous descent function, then we have f(xn) → f(x∗).

Thus, f is monotonically decreasing on the sequence {xn}∞n=1 as follows from the property
stated in Definitions 1 and 2. Hence we must have f(xn) − f(x∗) ≥ 0 for all n.

Given ξ > 0, then f(xn) − f(x∗) < ξ which implies xn → x∗ as n → ∞ and x∗ ∈ Γ. 2

5 Numerical Simulations

In this section, 15 test functions (TF) are used to test the feasibility of I-HSPM and compared
with others global optimization methods such as HSPM, Simulated Annealing (SA), Random
Search (RS), Nelder Mead (NM) and Differential Evolution (DE). These test functions are taken
from [24]. All the implementations are applied with Mathematica version 10.1 on a laptop with
CPU 2.5GHz and 8.00GB RAM.

Generally, if a function is wavy, which means it has a lot of minimizers, and it has the local
minimizer that will be trapped in some smooth solver [25]. The following table shows all the
test functions involved and their corresponding number of local minimizers (LoM).

Next, we compare the ability in locating the global minimizer of I-HSPM with HSPM,
SA, RS, NM and DE. Except for I-HSPM and HSPM, the rest of the algorithms applied
are implemented with the built-in function in Mathematica, and their corresponding control
settings like number of seeds or number of perturbations are user-adjustable. Table 2 displays
the result of the computation.

In Table 2, “Y” stands for “Yes, global minimizer is found”, while “N” means “No, global
minimizer is not found”. Table 2 shows I-HSPM and HSPM are able to find the global mini-
mizers of all 15 test functions while SA, RS, NM and DE do not.
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Table 1: Test Functions

TF Equation Area of Interest
Number

of LoM

TF1 0.6 + sin2(1 − 16
15 )− 1

50 sin(4 − 64x
15 )− sin(1− 16

15) x ∈ [−1, 1] 1

TF2 − sin(x) sin20(x2

π
) x ∈ [0, π] 1

TF3 x
2 + ( 1

2 )2 + ( 1
2)4 x ∈ [−5, 10] 1

TF4 (x2)
√

2
x ∈ [10, 10] 1

TF5 −√
x sin(x) x ∈ [0.1, 9.9] 2

TF6 x sin(x) + 0.1x x ∈ [−6, 6] 3
TF7 sin(x) + sin( 10x

3 ) + logx − 0.84x + 3 x ∈ [2.7, 7.5] 3

TF8 0.1((x− 5)2 − cos(5(x− 5)) x ∈ [0, 10] 5
TF9 − sin(10 logx) x ∈ [0.25, 10] 6

TF10 1 − cos(10x)e−
x
2

2 x ∈ [−π, π] 11
TF11 10(x2 − 10 cos(2πx)) x ∈ [−5.12, 5.12] 11

TF12 x
2 − 10 cos(2πx) + 10 x ∈ [−5.12, 5.12] 11

TF13 1 − cos(2πx) + 0.1x x ∈ [9.9, 9.9] 19

TF14 −1+cos(12x)
2+0.5x2 x ∈ −5.12, 5.12] 20

TF15 1 + 8 sin2(7(x − 0.9)2) + 6 sin2(14(x− 0.9)2) + (x− 0.9)2 x ∈ [−5, 5] 230

Table 2: Numerical Results

TF Exact Global Minimizer I-HSPM HSPM SA RS NM DE

TF1 -0.93279 Y Y Y Y Y Y
TF2 2.20291 Y Y Y Y Y Y
TF3 0 Y Y Y Y Y Y
TF4 0 Y Y Y Y Y Y
TF5 7.91705 Y Y N Y N Y
TF6 -4.93229 Y Y Y Y Y Y
TF7 5.19978 Y Y N Y Y N
TF8 5 Y Y Y Y Y Y
TF9 {0.333, 0.624, 1.170, 2.193, 4.111, 7.706} Y Y Y Y Y Y
TF10 0 Y Y N N N N
TF11 0 Y Y Y Y Y Y
TF12 0 Y Y N Y N Y
TF13 -9.00253 Y Y N Y N N
TF14 -0.260024 Y Y N Y Y Y
TF15 0.9 Y Y Y Y N Y
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The Failure Rate (FR) in locating the global solution based on the result given in Table 2
by using the formula FR = N

TF
and the Success Rate (SR) by using SR = 1−FR, are displayed

in Table 3.

Table 3: Success Rate and Failure Rate

I-HSPM HSPM SA RS NM DE

FR(%) 0 0 40 6.67 33.33 20
SR(%) 100 100 60 93.99 66.67 80

From Table 3, RS, DE, NM and SA were not able to find the exact global solution on some
test functions. Table 2 shows that, TF9 has 6 global minimizers, and all the algorithms applied
are successful in locating the global solutions. However, RS, DE, NM and SA only found the
one of the six solutions while HSPM and I-HSPM located all of them.

I-HSPM is an improved method from HSPM and shown has a better time complexity than
HSPM [26]. Here, their CPU time will be compared by using the parameter s = 0.003 to divide
the domain into several sub-intervals. In the computation, HSPM uses λ0 = 0 and st = 1,
while I-HSPM applies λ0 = 1. The result is listed in Table 4.

Table 4: CPU Time of I-HSPM and HSPM

Test Function (TF) I-HSPM HSPM

TF1 0.19 0.23
TF2 0.39 0.58
TF3 0.36 0.67
TF4 0.80 1.17
TF5 0.42 1.84
TF6 0.39 0.59
TF7 0.30 0.41
TF8 0.52 0.67
TF9 0.52 0.69
TF10 0.91 1.17
TF11 1.11 1.59
TF12 1.08 1.61
TF13 1.87 2.81
TF14 1.69 2.12
TF15 10.02 21.34

From the results of Table 2 and 4, the reduction of CPU time will not affect the results
obtained. Since the trusted interval is able to identify the region where a minimizer is located.
The adjustment of value of λ improves the CPU time without affecting the quality of global
minimizer found.
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The CPU time versus TF is presented in Figure 1. It is clear that I-HSPM outperforms
HSPM. The CPU time increases when the number of local minimizer increases.

Figure 1: CPU time of I-HSPM and HSPM (dashed) versus Test Function

6 Conclusion

I-HSPM is an unconstrained optimization algorithm. It is able to reduce a large non-convex
optimization problem into several smaller convex problems, which makes it to be unique. From
the theoretical analyses, we showed that, each trusted interval found in I-HSPM is convex and
I-HSPM is a globally convergent algorithm. I-HSPM ensures its capability in locating all local
solutions with a small enough value of s, a step size which segmented the domain. When all the
local minimizers are known, the global solution identified is guaranteed to be the exact global
solution.

From the aspect of numerical experiments, I-HSPM and its predecessor, HSPM are able
to locate all the true global solutions of all 15 test functions while some of the established
algorithms failed to do so, as shown in Tables 2 and 3. Also, we can observed that, I-HSPM
has lesser CPU time than HSPM particularly when the number of local minimizer increases,
the CPU time needed by HSPM is higher than I-HSPM. Hence we conclude that I-HSPM is
an exceptional global optimization algorithm in solving unconstrained univariate problems.
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