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Abstract A mathematical model is presented to investigate the dynamics of a pre-
stressed piezoelectric plate-strip resting on a rigid foundation, under the action of a time-
harmonic force, utilizing the three-dimensional linearized theory of electro-elastic waves in
initially stressed bodies. The governing equations of motion are solved by employing the
finite element method, and numerical results illustrating the relations between different
problem parameters are investigated. In particular, we show that the initial tension of the
plate-strip prevents its resonance, but the compression force passes after the corresponding
resonance mode.
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1 Introduction

The mechanical investigation of piezoelectric materials is becoming increasingly important, as
they are being used in more and more sophisticated areas such as beams, plates, and shells. In
the past few years, there has been tremendous interest in studying the mechanical behavior of
such materials. A review of the most well-known investigations is given in [1].

Many studies have been devoted to investigating such mechanical problems. Nowacki et
al. [2] investigated a structure comprising a piezoelectric layer on a piezoelectric substrate.
Considering the usual negative-velocity feedback control law, Wang et al. [3] investigated the
dynamic stability of active vibration control for piezoelectric composite plates. Kochetkov
and Rogacheva [4] presented approximate solutions for three-dimensional problems involving
piezoelectric actuators and sensors attached to elastic bodies Qing et al. [5] created a new and
effective analysis method for dynamic problems involving piezoelectric plates. Liou and Sung [6]
studied a problem arising at an anisotropic piezoelectric half-plane boundary under electrical
(mechanical) loading. Hosseini-Hashemi et al. [7] considered the three-dimensional natural
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frequencies of circular and annular functionally-graded plates with the addition of two piezo-
electric layers. Akbarov and Ilhan [8] investigated Lamb’s problem for a structure comprising a
piezoelectric layer on a piezoelectric half-plane under a time-harmonic force located at a point.
Li et al. [9] modeled a problem involving a laminated composite plate with piezoelectric layers
bonded to its upper and lower surfaces using third-order shear deformation plate theory.

Due to the advantages offered by piezoelectric materials, various problems have been in-
vestigated using suitable numerical methods. However, these problems depend significantly on
certain factors that make it difficult to solve them because they give rise to non-linear effects in
the dynamics of the elastic medium. These factors include (a) the choice of materials and (b)
the initial static stresses in each layer that are present before the external dynamical force is
applied. The first factor (a) is one of the most significant ones affecting the systems dynamics.
The initial stresses in the bodys layers (factor b) may arise either due to technological require-
ments or due to the temperature of the environment. Note that the classical linear theory of
elastodynamics is often inadequate for solving such problems, due to these and similar factors.
Since the wave propagation exhibits non-linear effects, deformations in elastic bodies are con-
sequently governed by a set of nonlinear partial differential equations. Assuming that (i) the
pre-stressed state (or initial stress) is exactly homogeneous and static and (ii) the additional
dynamic load to which the pre-stressed body is subjected is significantly smaller than the mag-
nitude of the initial load, these issues can be handled by the three-dimensional linearized theory
of elastic waves in initially stressed bodies. For further details, see references [10] and [11].

This paper presents a mathematical model of the dynamic stress field problem for a pre-
stressed piezoelectric plate-strip resting on a rigid foundation under the influence of a time-
harmonic force, assuming a piecewise-homogeneous body model and utilizing of the three-
dimensional linearized theory of electro-elastic waves in initially stressed bodies (TLTEEWISB).
This model is solved by employing the finite element method (FEM). In particular, certain
problem parameters relevant to the frequency response of the plate-strip are discussed and
analyzed.

2 Mathematical Model

Consider a pre-stressed piezoelectric plate-strip, poled along the Ox2-axis direction with thick-
ness h and length 2a, resting on a rigid foundation, as shown in Figure 1. We associate it with
Lagrange coordinates denoted by xi

′ which, in the natural state, coincide with Cartesian coor-
dinates xi. It is assumed that the plate-strip is in complete contact with the rigid foundation. A
time-harmonic force is applied to the midpoint of the plate-strip’s free surface, and this point is
chosen as the origin of the coordinate axes. It should be noted that the length of the plate-strip
in the Ox3-axis direction is infinite, and it is assumed that the applied time-harmonic force
extends to infinity in that direction. As a result, plane deformation arises in the Ox1x2-plane.
Hence, all numerical investigations will involve the region

B = {(x1, x2) : −a 6 x1 6 a, −h 6 x2 6 0} . (1)

Before the plate-strip is attached to the rigid foundation, it is stretched or compressed
separately in the Ox1-axis directions by a uniformly distributed normal force, producing a
uniaxial homogenous initial stress state in the plate-strip. This initial stress can be determined
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using the linear theory of electro-elasticity as follows:

σ11
0 = q and σ12

0 = σ13
0 = 0, (2)

where q is a known constant, and the additional superscript “0” represents the corresponding
initial stress intensity. The character of piezoelectric materials mean that the following initial
axial homogeneous electric displacement emerges in the piezoelectric layer:

D1
0 = d and D2

0 = 0, (3)

where d is a known constant. Note that the initial stress and electric displacement cannot be
independent of each other, as they must be self-consistent. This will be discussed in more detail
later.

Figure 1: Schematic of Plate-strip Problem

According to Yang [1] and Guz [10,11], the electro-elastic response of a piezoelectric plate-
strip is governed by the dynamic and electrostatic equilibrium equations

σij,j + qui,11 = ρüi (4)

and
Di,i + dui,i1 = 0, (5)

where i, j = 1, 2, σij is the symmetric stress tensor, Di is electric displacement vector, ui is
the mechanical displacement with respect to xi, and ρ is the mass density in its natural state.
The dots over the displacement components represent differentiation with respect to time, and
a comma followed by a subscript represents differentiation with respect to the relevant space-
coordinate. Here and below, repeated subscript indices are summed with respect to all possible
index values. The mechanical and geometrical relations for the present case can be written as
follows.

σ11 = c11u1,1 + c13u2,2 + e31ϕ,2

σ22 = c13u1,1 + c33u2,2 + e33ϕ,2

σ12 = σ21 = c44 (u1,2 + u2,1) + e15ϕ,1 (6)

D1 = e15 (u1,2 + u2,1)− γ11ϕ,1

D2 = e31u1,1 + e33u2,2 − γ33ϕ,2
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Here, the cij’s are elastic constants, the eij’s are piezoelectric constants, ϕ is the electric field
potential, and the γik’s are dielectric constants.

Now the boundary and contact conditions are considered. According to the foregoing dis-
cussion, the boundary-contact conditions can be given as

σ21|x2=0 = 0, σ22|x2=0 = −poδ (x1) eiωt, (7)

(quj,1 + σ1j)|x1=∓a = 0, (8)

uj|x2=−h = 0 (9)

and (
Di + ui,jDj

0
)∣∣

x1=∓a
= 0, (10)

where δ (·) is the Dirac delta function. In addition, the electrically open conditions can be
written in the form

ϕ|x1=∓a = 0 and ϕ|x2=0,−h = 0. (11)

This completes the formulation of the problem and the investigation of the governing field
equations.

3 Solution Procedure

As the structure of this problem is quite complex, it cannot be solved analytically. Consequently,
the FEM is employed here to provide a solution. First, however, some preparation is necessary.
The dimensionless coordinate system is introduced:

x̂1 =
x1

h
and x̂2 =

x2

h
. (12)

Since the force is assumed to be time-harmonic, with frequency ω, and can be represented as
poδ (x1) eiωt, all the corresponding dependent variables can be represented as

{σij, ui, εij, Di} (x1, x2, t) =
{
σ̄ij, ūi, ε̄ij, D̄i

}
(x1, x2) eiωt, (13)

where the over bars denote the amplitudes of the corresponding quantities. After applying the
coordinate transformation (12) and substituting the expression (13) into the foregoing equations
and conditions, the equivalent equations and boundary-contact conditions can be obtained for
the amplitudes of the sought values by replacing the terms ∂2uj/∂t2 and poδ (x1) eiωt with
−ω2uj and poδ (x1), respectively. Hereafter, we will omit the superimposed dashes and hats
until specified otherwise.

Now, to present the FEM model for this boundary-contact problem, the functional

J (u, ϕ) = J (u) + J (ϕ) (14)

is proposed, where

J (u) = 1
2

∫
B


c̃1

(
∂u1

∂x1

)2

+ c̃3

(
∂u2

∂x2

)2

+

(
∂u1

∂x2

+
∂u2

∂x1

)2

+ 2c̃2
∂u1

∂x1

∂u2

∂x2

+ η

{(
∂u1

∂x1

)2

+

(
∂u2

∂x1

)2
}
− Ω2

{
(u1)

2 + (u2)
2}

 dB

+
∫
S

po

c44
δ (x1) u2dS2

(15)
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and

J (ϕ) =
1

2

∫
B


2ẽ5

(
∂u1

∂x2

+
∂u2

∂x1

)
∂ϕ

∂x1

+ 2

(
ẽ1

∂u1

∂x1

+ ẽ3
∂u2

∂x2

)
∂ϕ

∂x2

+κ

(
∂u2

∂x1

∂ϕ

∂x2

+
∂u1

∂x1

∂ϕ

∂x1

)
− γ̃1

(
∂ϕ

∂x1

)2

− γ̃3

(
∂ϕ

∂x2

)2

 dB. (16)

In Equation (15), S represents the boundary enclosing domain B, and Equation (15) and
Equation (16) introduce the following notation:

c̃1 =
c11

c44

, c̃2 =
c13

c44

, c̃3 =
c33

c44

, η =
q

c44

, Ω = ωh

√
ρ

c44

,

ẽ1 =
e31

c44

, ẽ3 =
e33

c44

, ẽ5 =
e15

c44

, γ̃1 =
γ11

c44

, γ̃3 =
γ33

c44

, κ =
d

2c44

.

(17)

Here, Ω is the dimensionless frequency of the plate-strip and η is the initial stress parameter.
The validity of the proposed functional (14) can be proven using the fundamental principles

of the calculus of variations as follows. Its first variation, denoted by δJ (u, ϕ) = 0, must
be computed, and then the coefficients of the terms δu1, δu2, and δϕ must separately be set
equal to zero. Using this procedure, the equations of motion (4)-(5) and the boundary-contact
conditions (7)-(11) can be derived, completing the proof.

The FEM model can now be created, according to the virtual work principle and the stan-
dard Rayleigh-Ritz method [12]. To do this, the domain B is divided into a number of sub-
domains with smooth rectangular structures. The number of these finite elements is such that
the boundary conditions are satisfied with very high accuracy and the numerical results con-
verge sufficiently well. Let the mechanical displacements and the electric field potential for the
tth finite element be

u1
(t) =

M∑
i=1

αi
(t)Ni (r, s) u2

(t) =
M∑
i=1

βi
(t)Ni (r, s) and ϕ(t) =

M∑
i=1

φi
(t)Ni (r, s), (18)

where M is number of the nodes in the tth finite element, the coefficients αi
(t), βi

(t) and
φi

(t) are unknowns that need to be determined, the Ni (r, s) are the shape functions for the
tth finite element, and r and s are the local normalized coordinate components in the local
coordinate system associated with the corresponding element. Note that the shape functions
are chosen such that Nj (r, s) ∈ L1

2, where L1
2 is the set of functions whose squares and first

order partial differentials are Lebesque integrable. The shape functions are defined over the
domain [−1, 1]× [−1, 1].

Substituting Equation (18) into Equation (14) and applying the usual solution method to
the resultant equation leads to the following system of algebraic equations, in matrix form:(

K - ω2M
)
x̃ = F (19)

where K is the stiffness matrix, M is the mass matrix, x̃ is a column vector representing the
unknown displacements and the electric field potential, and F is the force vector. To reduce
the size of the present paper, the explicit forms of the matrices and vectors in (19) are not
given here, but they can be derived directly from Equation (14)-(17) using this procedure.
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The displacements and electric field potentials at the nodes can now be obtained by solving
the matrix equation (19). Given these values, the stresses can easily be calculated using the
stress-displacement relation

σ̃ = DBx̃ (20)

where
σ̃ =

[
σ11 σ22 σ12 D1 D2

]T
(21)

D =


c11 c13 0 0 e31

c13 c33 0 0 e33

0 0 c44 e15 0
0 0 e15 −γ11 0

e31 e33 0 0 −γ33

 (22)

and

B =


∂N1

∂r
· · · ∂NM

∂r
0 · · · 0 0 · · · 0

0 · · · 0 ∂N1

∂s
· · · ∂NM

∂s
0 · · · 0

∂N1

∂s
· · · ∂NM

∂s
∂N1

∂r
· · · ∂NM

∂r
0 · · · 0

0 · · · 0 0 · · · 0 ∂N1

∂r
· · · ∂NM

∂r

0 · · · 0 0 · · · 0 ∂N1

∂s
· · · ∂NM

∂s

 . (23)

This completes the discussion of the FEM model of the considered problem.

4 Numerical Results and Discussion

Before presenting the numerical results, some explanation are necessary. Here, the body being
considered was divided into 200 equal parts along the Ox1-axis direction, denoted by m, and
into 20 equal parts in the Ox2-axis direction, denoted by n, unless stated otherwise. The
mechanical, piezoelectric, and dielectric constants of the materials used for the body are given
in Table 1 [13]. All the numerical investigations were made at the interface between the plate-
strip and the rigid foundation, with h/2a = 0.2, Ω = 0, and η = 0. The ratios Cpq = c̃p/c̃q and
Γ = γ̃1/γ̃3 have also been introduced. Unless stated otherwise, BaTiO3 will be used for the
concrete examples. As previously discussed, a self-consistency condition on the initial stress
(tension or compression) field for the piezoelectric phase must be satisfied. In this study, only
a uniformly distributed normal initial stress field is considered. By considering the constitutive
equations given in (6), this means that the equation d = q (c13e33 − c33e31) / (c13

2 − c11c33) can
be directly obtained for the piezoelectric phase.

The validity and reliability of the algorithms and PC programs used for the considered
problem must also be verified. To do this, an error analysis was made by employing the
function

∆casef̄ = |f (constant)− f (variable)| ,

and it was shown that the boundary-contact conditions (7)-(11) were satisfied and that the nu-
merical results obtained agreed well with the foregoing mathematical, mechanical and physical
considerations.

Figure 2 shows how the function ∆mσ22 =
∣∣σ22|m=200 − σ22|m<200

∣∣×h/p0 varies with respect
to x1/h. It can be concluded from this figure that, by increasing the number of finite elements
in the Ox1-axis direction, the error function values tend to zero. Figure 3 show the variation
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Table 1: Mechanical, Piezoelectric, and Dielectric Constants for Various Materials

Materials
c11 c13 c33 c44 e31 e33 e15 γ11 γ33

×1010 (N/m2) (C/m2) ×10−8 (F/m)

BaTiO3 15.0 6.6 14.6 4.4 -4.35 17.5 11.4 1.115 1.26
NBS-1 11.0 4.12 10.0 3.45 -3.3 14.8 7.7 0.9 0.89
PCR-8 14.4 7.7 11.6 2.83 -7.5 13.6 11.6 0.83 0.74
TBKS 14.6 5.06 14.2 4.9 -0.68 7.71 4.56 0.41 0.336
TBK-3 15.7 6.2 15.3 4.4 -3.2 12.5 9.1 0.95 0.95

Figure 2: Distribution of the Function ∆mσ22 for h/2a = 0.2, Ω = 0, and η = 0

Figure 3: Distribution of the Function ∆nσ22 for h/2a = 0.2, Ω = 0, and η = 0
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a b

c d

Figure 4: Effect of the Thickness ratio on the Distribution of a D1h/p0, b D2h/p0, c σ12h/p0,
d σ22h/p0 for PCR - 8, for Ω = 0.1 and η = 0
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in the function ∆nσ22 =
∣∣σ22|n=20 − σ22|n<20

∣∣ × h/p0, demonstrating that the value of the
function ∆nσ22 decreases as the number of finite elements in the Ox2-axis direction increases.
Consequently, increasing the number of finite elements leads to an improvement in the numerical
results obtained by the current algorithm. Moreover, comparing the graphs given in Figs. 2
and 3 reveals the following.

• By increasing the value of m, the absolute error at the point x1/h = 0, i.e., the point where
the force is applied to the plate-strip, quickly tends to zero, and the absolute maximum
error values are obtained near the points x1/h = ∓0, 5.

• In contrast to increasing the value of m, increasing the value of n causes the absolute
errors to reach a maximum at the point x1/h = 0, and to vanish around the points
x1/h = ∓0, 5.

Figure 5: Relationship between σ22h/p0 and Ω for Various Materials, for h/2a = 0.2 and η = 0

Figure 4 shows the distributions of the electric displacements D1h/p0 (Figure 4a) and D2h/p0

(Figure 4b), the shear stress σ12h/p0 (Figure 4c) and the normal stress σ22h/p0 (Figure 4d) with
respect to x1/h for different piezoelectric material thickness ratios. From this, it can be seen
that the stress distributions and electric displacements gradually decrease as the thickness
ratios increases. Increasing the ratio h/2a leads to decreasing oscillation in the stress and
electric displacements components. It should be noted that the changes in the shear stress
σ12h/p0 with the electric displacement D1h/p0 and in the normal stress σ22h/p0 with the electric
displacement D2h/p0 have the same vibrational characteristics. Formally, the graphs of both
the shear stress and the electric displacement D1h/p0 in the Ox1-axis direction are symmetric
with respect to the origin, while the others are symmetric with respect to x1/h = 0.

The numerical results obtained in Figure 2 and Figure 3 are expected, due to the solution
procedure used. Furthermore, the results in Figure 4 agree well with the foregoing mechanical
considerations. In addition, the distributions of the stresses and electric displacements vanish
toward to the edges of the graphs. Note that these figures are for media with no initial stress.
Hence, the numerical results satisfy the boundary conditions (8), proving the validity and
reliability of the algorithms and PC programs.
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Figure 6: Relationship between σ22h/p0 and Ω for various values of h/2a, for η = 0

The main aim of this paper is to investigate the effect of certain parameters on the plate-
strips frequency response of the plate-strip strip, so all graphs will be plotted for the point
(0,−1) from now on.

Figure 5 shows the effect of the choice of plate-strip material on the relationship between
σ22h/p0 and Ω, indicating that this relationship is non-monotonic. This result agrees well with
the foregoing mechanical considerations. For each material, the absolute value of the normal
stress σ22h/p0 increases with the parameter Ω up to a certain value, specific to that material. It
can also be observed that the absolute value of σ22h/p0 reaches a maximum for certain values
of Ω. These values are called resonance values and are denoted by Ωres. These Ωres values
decrease as the ratios C23 and Γ increase, but increase with the ratio C12.

Figure 6 show how the stress σ22h/p0 varies with respect to the dimensionless frequency Ω
for various thickness ratios h/2a. The Ωres values decrease as the ratio h/2a increases. Note
that the Ωres values can be determined from the graphs. Increasing the thickness h/2a causes
the number of local extrema of σ22h/p0 to increase with respect to Ω. The ratio h/2a has
a significant effect on the plate-strips frequency response, not only quantitatively, but also
qualitatively.

Figure 7 shows the relationship between the stress σ22h/p0 and the dimensionless frequency
Ω when plate-strip experiences an initial compression or tension field. Note that the negative
(positive) sign of the parameter η denotes initial compression (tension). These graphs indicates
that increasing the value of the initial compression (tension) parameter η causes the absolute
values of σ22h/p0 to increase (decrease). The initial stretching prevents the resonance value of
σ22h/p0, but the initial compressing exceeds the corresponding resonance value. As a result,
the initial stress parameter η has a considerable influence on the frequency response of the
stress σ22h/p0, not only quantitatively, but also in the qualitatively. Moreover, the numerical
results show that there are locations where parametric resonance arises in the stress σ22h/p0

for certain values of η as can be observed from the bottom box in the figure. An increase in
the parameter η reduces these parametric resonances.

Figure 8 shows the effect of the material choice on the relationship between the stress
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Figure 7: Relationship between σ22h/p0 and Ω for Various Values of η, for h/2a = 0.2

Figure 8: Relationship between σ22h/p0 and Ω for Various Materials, for h/2a = 0.2 and Ω = 0
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Figure 9: Relationship between σ22h/p0 and Ω for Various Values of h/2a, for Ω = 0

σ22h/p0 and the initial stress parameter η. In addition, Figure 9 shows the influence of h/2a on
this relationship. Together, these figures demonstrate that the distribution of the stress σ22h/p0

depends linearly on both the initial tension and compression. Increasing the h/2a value reduces
the influence of on the distribution of σ22h/p0. Moreover, this influence decreases as the ratios
C23 and Γ decrease, but as the ratio C12 increases.

5 Conclusion

This paper presents a mathematical model for investigating the forced vibration of a pre-stressed
piezoelectric plate-strip resting on rigid foundation, subject to the action of a time-harmonic
force, assuming a piecewise-homogeneous body model and utilizing the TLTEEWISB. This
model was solved numerically by employing the FEM. Numerical results illustrating the influ-
ence of certain parameters on the dynamics of the considered plate-strip have been discussed,
leading to the following important conclusions.

• Initial tension prevents resonance in the stress σ22h/p0, but initial compression passes
after this resonance mode.

• For certain values of the initial stress parameter η, there are locations where parametric
resonance occurs in the stress σ22h/p0.

• Decreasing the plate-strip’s thickness for a given length causes the number of local extrema
of the stress σ22h/p0 to decrease;

• Increasing the h/2a value causes the influence of the initial stress η on the dispersion
behavior of the stress σ22h/p0 to decrease.

Although the numerical results given here have been presented for certain specific materials
(e.g., PCR-8), they are more general valid in a qualitative sense. Moreover, these results are
encountered in everyday engineering practice, in the impact treatment of metals resting on
other metals.
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