Comparison of Time Series Forecasting Methods Using Neural Networks and Box-Jenkins Model

Authors

  • Ani Shabri

DOI:

https://doi.org/10.11113/matematika.v17.n.102

Abstract

Kajian ini membincangkan keupayaan pengkaedahan Box-Jenkins bila dibandingkan dengan kaedah Rangkaian Neural dalam peramalan siri masa. Lima siri masa yang kompleks dibangunkan menggunakan kaedah rambatan balik Rangkaian Neural dan dibandingkan dengan model Box-Jenkins yang piawai. Analisis kajian menunjukkan bahawa bagi data siri masa bermusim, kedua-dua kaedah menghasilkan keputusan yang setanding. Walau bagaimana pun, untuk siri masa yang berbentuk tidak menentu, kaedah Box-Jenkins menghasilkan keputusan yang kurang baik berbanding Rangkaian Neural. Hasil ini juga menunjukkan bahawa Rangkaian Neural adalah teguh, menghasilkan peramalan yang baik untuk jangka panjang, dan boleh menjadi kaedah alternatif untuk peramalan. Katakunci: Rangkaian Neural; Rambatan Balik; Peramalan; Teguh. The performance of the Box-Jenkins methods is compared with that of the neural networks in forecasting time series. Five time series of different complexities are built using back propagation neural networks were compared with the standard Box-Jenkins model. It is found that for time series with seasonal pattern, both methods produced comparable results. However, for series with irregular pattern, the Box-Jenkins outperformed the neural networks model. Results also show that neural networks are robust, provide good long-term forecasting, and represent a promising alternative method for forecasting. Keywords: Neural Networks; Back Propagation; Forecasting; Robust.

Downloads

Published

01-06-2001

How to Cite

Shabri, A. (2001). Comparison of Time Series Forecasting Methods Using Neural Networks and Box-Jenkins Model. MATEMATIKA, 17, 25–32. https://doi.org/10.11113/matematika.v17.n.102

Issue

Section

Mathematics