Principal Component Analysis in Modelling Stock Market Returns

Authors

  • Kassim Haron
  • Maiyastri

DOI:

https://doi.org/10.11113/matematika.v20.n.142

Abstract

Dalam kajian ini satu kaedah alternatif untuk membandingkan pencapaian beberapa model GARCH bagi penyuaian siri kadar pulangan harian KLCI sebelum dan selepas krisis kewangan Asia pada tahun 1997 menggunakan Analisis Komponen Prinsipal dicari. Perbandingan kemudiannya dibuat dengan keputusan yang diperoleh daripada kaedah yang diketahui berasaskan kepada pangkat nilai Log Likelihood (Log L), Schwarz’s Bayesian Criterion (SBC) dan Akaike Information Criterion (AIC). Didapati bahawa model penyuaian terbaik dan terburuk yang dikenalpasti menggunakan kedua-dua kaedah adalah tepat sama bagi dua tempoh masa itu tetapi beberapa percanggahan, bagaimana pun, wujud di antara model pertengahan. Kami juga dapati kaedah yang dicadangkan mempunyai kelebihan yang ketara ke atas lawannya kerana PCA menggunakan nilai sebenar bagi ketiga-tiga kriteria dan oleh itu ketidakupayaan untuk menyatakan dengan tepat kedudukan secara relatif setiap model yang bersaing seperti yang dihadapi oleh kaedah pangkat dapat dielakkan. Kelebihan lain ialah kaedah ini juga dapat mengklasifikasikan model ke dalam beberapa kumpulan berbeza, disusun sedemikian rupa supaya setiap kumpulan terdiri daripada model dengan paras kebolehan penyuaian yang hampir sama. Dua kelas model ekstrim masing-masing dikenalpasti mewakili kumpulan terbaik dan terburuk. Katakunci: Model GARCH; Pulangan; Penyuaian; Pangkat; Komponen prinsipal. In this study, an alternative method to compare the performance of several GARCH models in fitting the KLCI daily rate of return series before and after the Asian financial crisis in 1997 using Principal Component Analysis (PCA) is sought. Comparison is then made with the results obtained from a known method based on the ranks of the Log Likelihood (Log L), Schwarz’s Bayesian Criterion (SBC) and the Akaike Information Criterion (AIC) values. It is found that the best and the worst fit models identified by both methods are exactly the same for the two periods but some degree of disagreement, however, existed between the intermediate models. We also find that the proposed method has a clear edge over its rival because PCA uses actual values of the three criteria and hence the inability to exactly specify the relative position of each of the competing models as faced by the ranking method may be avoided. Another plus point is this method also enables models to be classified into several distinct groups ordered in such a way that each group is made up of models with nearly the same level of fitting ability. The two extreme classes of models are identified to represent the best and the worst groups respectively. Keywords: GARCH models; Returns; Fitting; Rank; Principal component

Downloads

Published

01-06-2004

How to Cite

Haron, K., & , M. (2004). Principal Component Analysis in Modelling Stock Market Returns. MATEMATIKA, 20, 31–41. https://doi.org/10.11113/matematika.v20.n.142

Issue

Section

Mathematics