Teorem Penyahkaburan Teroptimum: Pengikat Pemodelan Kabur Gandingan Mikrojalur
DOI:
https://doi.org/10.11113/matematika.v16.n.491Abstract
Dalam makalah ini dipaparkan model kabur bagi gandingan mikrojalur. Model ini dibina bagi pengoptimuman rekabentuk saling hubungan mikrojalur berkelajuan tinggi. Fungsi keahlian berdasarkan kecenderungan bagi parameter geometri dan eletrik mikrojalur bersertakan prestasi cakap silang dikaburkan bagi mengwujudkan suasana kabur. Suasana kabur kemudiannya diproseskan bagi menghasilkan konfigurasi optimum geometri mikrojalur. Petunjuk bagi mengenal pasti konfoigurasi opotimum ini dimuatkan dalam teorem penyahkaburan teroptimum yang dibuktikan secara analisis. Satu contoh diketengahkan bagi mengilustrasikan aplikasi model serta teorem berkenaan. Perbandingan hasil ujikaji dan simulasi dimuatkan bersama bagi menunjukkan keberkesanan model yang terbaru ini. Katakunci: Mikrojalur; Ketara; Kabur; Model; Cakap silang; Kemuatan; Dinyahkaburkan teroptimum In this paper fuzzy mathematical models for coupled microstrip lines is presented. The model is developed for design optimisation of high speed interconnections. Membership functions based on preference/suggested geometrical/electrical parameters and cross-talk performance are fuzzified to create a fuzzy environment. The environment is then processed to produce the optimized geometrical configurations for the microstrip lines. An indicator to determine the optimum configurations is given as an optimized defuzzification theorem which is proven analytically. an example is presented which illustrates application of the model and hence the theorem, respectively. To confirm the effectiveness of the proposed model experimental and simulated results are compared. Keywords: Microstrip; Crips; Fuzzy; Model; Crosstalk; Capacitance; Optimised DefuzzifiedDownloads
Published
01-06-2010
How to Cite
Ahmad, T. (2010). Teorem Penyahkaburan Teroptimum: Pengikat Pemodelan Kabur Gandingan Mikrojalur. MATEMATIKA, 16, 61–71. https://doi.org/10.11113/matematika.v16.n.491
Issue
Section
Mathematics