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Abstract In this paper we discuss the convergence of a modified BFGS method. We
prove that the modified BFGS method will terminate in n steps when minimizing
n−dimensional quadratic functions with exact line searches.

Keywords Quadratic termination, modified BFGS.

1 Introduction

The quasi-Newton methods are very useful and efficient methods for solving the uncon-
strained minimization problem

minf(x);x ∈ <n. (1)

Many of these methods share the properties of finite termination on strictly convex
quadratic functions, a linear or superlinear rate of convergence on general convex functions,
and no need to store or evaluate the second derivative matrix. In general, an approxima-
tion to the second derivative matrix is built by accumulating the results of earlier steps.
Typically, given both an approximation Hk to [∇2f(xk)]−1 and gk the gradient ∇f(xk) at
the current point xk, a quasi-Newton algorithm starts each iteration by taking a step from
the current

xk+1 = xk − λHkgk, (2)

where the steplength λ > 0 is chosen so that

f(xk) ≥ f(xk − λHkgk) (3)

are satisfied; and then to form Hk+1 by using an updating formula satisfying the quasi-
Newton condition

Hk+1yk = sk, (4)

where sk = xk+1 − xk and yk = gk+1 − gk. Descriptions of many quasi-Newton algorithms
can be found in books by Luenberger [4] and Dennis and Schnabel [3]. Although there are a
large number of quasi-Newton methods, one method surpasses the others in popularity: the
BFGS update of Broyden, Fletcher, Goldfarb, and Shanno; see, e.g., Dennis and Schnabel
[3]:

Hk+1 = Hk +
1

sT
k yk

((
1 +

yT
k Hkyk

sT
k yk

)
sksT

k − skyT
k Hk −HkyksT

k

)
. (5)
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This method exhibits more robust behavior than its relatives. Many attempts have been
made to improve this robustness. Among them are the works by Yuan [7] and Biggs [1, 2],
which give a modified BFGS update. In the following section, we will briefly describe this
modified update. We also give some convergence properties for these methods in Section 3.

In this paper, the following notations are used: span{x1, x2, . . . , xk} denotes the sub-
space spanned by x1, x2, . . . , xk. Whenever we refer to an n−dimensional strictly convex
quadratic function, we assume it is of the form

f(x) =
1
2
xT Ax− xT b,

where A is a positive definite n× n matrix and b is an n vector.

2 A Modified BFGS Update

Assuming Hk non-singular, we define Bk = H−1
k . It is easy to see that the quasi-Newton

step
dk = −Hkgk (6)

is a stationary point of the following problem:

mind∈<nφk(d) = f(xk) + dT gk +
1
2
dT Bkd (7)

which is an approximation to problem (1) near the current iterate xk, since φk(d) ≈ f(xk+d)
for small d. In fact, the definition of φk(·) in (7) imples that

φk(0) = f(xk), (8)

∇φk(0) = g(xk), (9)

and the quasi-Newton condition (4) is equivalent to

∇φk(xk−1 − xk) = g(xk−1). (10)

Thus, φk(x− xk) is a quadratic interpolation of f(x) at xk and xk−1, satisfying conditions
(8)− (10). The matrix Bk (or Hk) can be updated so that the quasi-Newton equation is
satisfied.

In [7], approximate function φk(d) in (7) is required to satisfy the interpolation condition

φk(xk−1 − xk) = f(xk−1) (11)

instead of (10). This change was inspired from the fact that for one dimensional problem,
using (11) give a slightly faster local convergence if we assume λk = 1 for all k. Equation
(11) can be rewritten as

sT
k−1Bksk−1 = 2

[
f(xk−1)− f(xk) + sT

k−1gk

]
, (12)

In order to satisfy (12), the BFGS formula is modified as follows:

Bk+1 = Bk −
BksksT

k Bk

sT
k Bksk

+ tk
ykyT

k

sT
k yk

, (13)
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where
tk =

2
sT

k yk

[
f(xk)− f(xk+1) + sT

k gk+1

]
. (14)

The inverse update, Hk+1 will be

Hk+1 = Hk +
1

sT
k yk

((
αk +

yT
k Hkyk

sT
k yk

)
sksT

k − skyT
k Hk −HkyksT

k

)
, (15)

with αk = 1/tk.
Assume that Bk is positive definite and that sT

k yk > 0, Bk+1 defined by (13) is positive
definite if and only if tk > 0. The inequality tk > 0 is trivial if f is strictly convex, and it is
also true if the steplength λk is chosen by an exact line search, which requires sT

k gk+1 = 0.
For a uniformly convex function, it can be easily shown that there exists a constant δ > 0
such that tk ∈ [δ, 2] for all k, and consequently global convergence proof of the BFGS
method for convex functions with inexact line searches, which was given by Powell [5].

For a general nonlinear function, Yuan [7] truncated tk to the interval [0.01, 100], and
showed that the global convergence of the modified BFGS algorithm is preserved for convex
functions.

If the objective function f is cubic along the line segment between xk−1 and xk then we
have the following relation

sT
k−1∇2f(xk)sk−1 = 4sT

k−1gk + 2sT
k−1gk−1 − 6 [f(xk−1)− f(xk)] , (16)

by considering the Hermit interpolation on the line between xk−1 and xk. Hence it is
reasonable to require that the new approximate Hessian satisfy condition

sT
k−1Bksk−1 = 4sT

k−1gk + 2sT
k−1gk−1 − 6 [f(xk−1)− f(xk)] . (17)

Biggs [1, 2] gives the inverse of update of (13) with the value tk so chosen that (17) holds.
The respected value of tk is given by

tk =
6

sT
k yk

[
f(xk)− f(xk+1) + sT

k gk+1

]
− 2. (18)

For one-dimensional problems, Wang and Yuan [6] showed that (13) with (18) and without
line searches (that is λk = 1 for all k) implies R−quadratic convergence.

3 Convergence of the modified BFGS method

We will now describe new representations of the modified BFGS update and show that
using this update, the quasi-Newton with exact line searches will terminte in n step when
minimizing quadratic functions of n variables.

Let us consider quasi-Newton methods with an update of the form

Hk+1 = PT
k H0Qk +

k∑
i=1

wikzT
ik. (19)

Here, we restrict ourselves to the following:
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(i) H0 is an n × n symmetric positive definite matrix denotes the initial approximation
of the inverse Hessian. Mostly H0 = I, the identity matrix is set;

(ii) Pk is an n× n matrix that is the product of projection matrices of the form

I − uvT

uT v
, (20)

where u ∈ span{y0, . . . , yk} and v ∈ span{s0, . . . , sk}, and Qk is an n×n matrix that
is the product of projection matrices of the same form where u is any n−vector and
v ∈ span{s0, . . . , sk};

(iii) wik (i = 1, . . . , k) is any n−vector, and zik (i = 1, . . . , k) is any vector in span{s0, . . . , sk}.
This form of update fits many known quasi-Newton methods, including the Broyden

family and BFGS method. The modified BFGS update (15) is also equivalent to the (19)
with

Pk = Qk =
k∏

j=0

(
I −

yjs
T
j

sT
j yj

)
, wik = zik =

∏k
j=i

(
I − (yjs

T
j )/(sT

j yj)
)T

si√
tisT

i yi

. (21)

It is trivial that Pk, Qk and zik all obey the constraints imposed on them.
We now show that the modified BFGS method of the form (19) with (21) produce

conjugate search directions and terminate in n iterations.

Theorem 1 Suppose that we apply a quasi-Newton method with an update of the form (19)
with (21) to minimize an n-dimensional strictly convex quadratic function. Then for each
k before termination (i.e., gk+1 6= 0),

gT
k+1sj = 0, for all j = 0, 1, . . . , k, (22)

sT
k+1Asj = 0, for all j = 0, 1, . . . , k, and (23)

span{s0, . . . , sk+1} = span{H0g0, . . . ,H0gk+1}, (24)

Proof Since

Pkyi =
{

0, if i = 1, . . . , k
yi, if i = 0.

we will first show that

Pjyi ∈ span{y0, . . . , yj−1} for all i = 0, 1, . . . , k, j = 1, . . . , k. (25)

Note that

Pjyi =
j∏

i=1

(
I − yis

T
i

sT
i yi

)
yi. (26)

We will prove (22)-(24) by induction. Since the line searches are exact, g1 is orthogonal
to s0. Using the fact that P0y0 = 0 from (25) and the fact that zi0 ∈ span{s0} implies
gT
1 zi0 = 0, i = 1, . . . , k, we see that s1 is conjugate to s0 since

sT
1 As0 = λ1d

T
1 y0

= −λ1g
T
1 HT

1 y0

= −λ1g
T
1

(
QT

0 H0P0 + z1,0w
T
1,0

)
y0

= 0.
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Finally, span{s0} = span{H0g0}, and so the base case is established.
We will now assume that claims (22)-(24) hold for k = 0, 1, . . . , k̂ − 1 and prove that

they also hold for k = k̂.
The vector gk̂+1 is orthogonal to sk̂ since the line search is exact. Using the induction

hypothesis that gk̂ is orthogonal to {s0, . . . , sk̂−1} and sk̂ is conjugate to {s0, . . . , sk̂−1}, we
see that, for j < k̂,

gT
k̂+1

sj = (gk̂ + yk̂)T sj = (gk̂ + Ask̂)T sj = 0.

Hence, (22) holds for k = k̂.
To prove (23), we note that

sT
k̂+1

Asj = −λk̂+1g
T
k̂+1

HT
k̂+1

yj ,

so it is sufficient to prove that gT
k̂+1

HT
k̂+1

yj = 0 for j = 0, 1, . . . , k̂. We will use the following
facts:

(i) gT
k̂+1

QT
k̂

= gT
k̂+1

since each s used to form Qk̂ is in span{s0, . . . , sk̂}, and gT
k̂+1

is
orthogonal to that span.

(ii) gT
k̂+1

zik̂ = 0 for i = 1, . . . , k̂ since each zik̂ is in span{s0, . . . , sk̂}, and again gT
k̂+1

is
orthogonal to that span.

(iii) Since we have already showed that (25) holds true, for each j = 0, 1, . . . , k̂ there exist
ν0, . . . , νk̂−1 such that Pk̂yj can be express as

∑k̂−1
i=0 νiyi.

(iv) For i = 0, 1, . . . , k̂ − 1, gk̂+1 is orthogonal to H0yi because gk̂+1 is orthogonal to
span{s0, . . . , sk̂} and H0yi ∈ span{s0, . . . , sk̂} from (24).

Thus,

gT
k̂+1

HT
k̂+1

yj = gT
k̂+1

QT
k̂
H0Pk̂ +

k̂∑
i=1

zik̂wT
ik̂

 yj

= gT
k̂+1

QT
k̂
H0Pk̂yj +

k̂∑
i=1

gT
k̂+1

zik̂wT
ik̂

yj

= gT
k̂+1

H0Pk̂yj

= gT
k̂+1

H0

k̂−1∑
i=1

νiyi


=

k̂−1∑
i=1

νig
T
k̂+1

H0yi


= 0.

Therefore, (23) holds for k = k̂.
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Finally, using (i) and (ii) from above,

sk̂+1 = −λk̂+1Hk̂+1gk̂+1

= −λk̂+1

Pk̂H0Qk̂gk̂+1 +
k̂∑

i=1

wik̂zT
ik̂

gk̂+1


= −λk̂+1P

T
k̂

H0gk̂+1.

Since PT
k̂

maps any n−vector v into span{v, s0, . . . , sk̂+1} by its construction, there exist
µ0, . . . , µk̂+1 such that

sk̂+1 = −λk̂+1

H0gk̂+1 +
k̂+1∑
i=0

muisi

 .

Hence,

H0gk̂+1 ∈ span{s0, . . . , sk̂+1},

so

span{H0g0, . . . ,H0gk̂+1} ⊆ span{s0, . . . , sk̂+1}.

To show equality of the above sets, we will show that H0gk̂+1 is linearly independent of
{H0g0, . . . ,H0gk̂}. (We already have that the vector H0g0, . . . ,H0gk̂ are linearly indepen-
dent since they span the same space as the linear independent set s0, . . . , sk̂.) Suppose that
H0gk̂+1 is not linearly independent. Then there exist β0, . . . , βk̂, not all zero, such that

H0gk̂+1 =
k̂∑

i=0

βiH0gi.

Since gk̂+1 is orthogonal to {s0, . . . , sk̂} and by our induction assumption, this implies that
gk̂+1 is also orthogonal to {H0g0, . . . ,H0gk̂}. Thus, for any j between 0 and k̂,

0 = gT
k̂+1

H0gj =

 k̂∑
i=0

βiH0gi

T

gj =
k̂∑

i=0

βig
T
i H0gj = βjg

T
j H0gj .

Since H0 is positive definite and gj is nonzero, we conclude that βj must be zero. Since this is
true for every j between 0 and k̂, we have a contradiction. Thus, the set {H0g0, . . . ,H0gk̂+1}
is linearly independent. Hence, (24) holds for k = k̂.

When a method produces conjugate search directions, we can say something about
termination.

Corollary Suppose we have a method satisfying all conditions in Theorem 1, then this
method will terminates in no more than n iterations.
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Proof Let k be such that g0, . . . , gk are all nonzero and such that Higi 6= 0 for i = 0, . . . , k.
Since we have a method satisfying all conditions in Theorem 1, we claim that the (k + 1)-
subspace of search directions, span{s0, . . . , sk} is equal to the (k + 1)-Krylov subspace,
span{H0g0, . . . , (H0A)kH0g0}.

From (24), we know that span{s0, . . . , sk} = span{H0g0, . . . ,H0gk}. We will show via
induction that span{H0g0, . . . ,H0gk} = span{H0g0, . . . , (H0A)kH0g0}. This base case is
trivial since (H0A)0 = I. So assume that

span{H0g0, . . . ,H0gi} = span{H0g0, . . . , (H0A)iH0g0}

for some i < k. Now,

gi+1 = Axi+1 − b = A(xi + si)− b = Asi + gi,

and from (24) and the induction hypothesis,

si ∈ span{H0g0, . . . ,H0gi} = span{H0g0, . . . , (H0A)iH0g0},

which implies that H0Asi ∈ span{(H0A)H0g0, . . . , (H0A)i+1H0g0}. So,

H0gi+1 ∈ span{H0g0, . . . , (H0A)i+1H0g0}.

Hence, the search directions span the Krylov subspace and are conjugate. Then the iterates
are the same as those produces by conjugate gradient methods with preconditioner H0 (or
classical conjugate gradients with H0 = I).

The conjugate gradient method is well known to terminate within n iterations, we can
conclude that the given modified BFGS scheme terminates in at most n iterations. �

Note that we require that Hkgk be nonzero whenever gk is nonzero; this requirement is
equivalent to positive definite updates and is trivial if tk > 0.

4 Conclusions

We have shown that the modified BFGS method fitting a form (19) with (21) have the
property of producing conjugate search directions on convex quadratics. This method will
terminate in at most n iterations. This type of finite termination property has sometimes
been called quadratic termination. The relevance of the quadratic termination property to
the general nonlinear functions was originally based on the assumption that if a method ter-
minates in a finite number of steps for a quadratic then this implies superlinear convergence
for nonlinear functions.
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