
MATEMATIKA, 2008, Volume 24, Number 1, 75–84
c©Department of Mathematics, UTM.

Half-Sweep Geometric Mean Method for Solution
of Linear Fredholm Equations

1M.S. Muthuvalu & 2J. Sulaiman
School of Science and Technology, Universiti Malaysia Sabah

Locked Bag 2073, 88999 Kota Kinabalu, Sabah, Malaysia
e-mail: 1sundaram at2@yahoo.com, 2jumat@ums.edu.my

Abstract The objective of this paper is to examine the application of the Half-Sweep
Geometric Mean (HSGM) method by using the half-sweep approximation equation
based on quadrature formula to solve linear integral equations of Fredholm type. The
formulation and implementation of the Full-Sweep Geometric Mean (FSGM) and Half-
Sweep Geometric Mean (HSGM) methods are also presented. Some numerical tests
were carried out to show that the HSGM method is superior to the FSGM method in
the sense of complexity and execution time.
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1 Introduction

Generally, linear integral equations of the first kind have the form

∫ b

a

K(x, t)y(t) dt = f(x), a ≤ x ≤ b (1)

where y(x) is the unknown function, K(x, t) is the kernel of the integral equation and f(x)
is a given function. K(x, t) is called Fredholm kernel if the kernel in Eq. (1) is continuous on
the square S = {a ≤ x ≤ b, a ≤ t ≤ b} or at least square integrable on this square. Then,
Eq. (1) with constant integration limits and Fredholm kernel are called Fredholm equations
of the first kind (Polyanin & Manzhirov [12]).

Frequently, Fredholm integral equation of the first kind cannot be solved analytically for
the unknown function y(x). In many application areas, it is necessary to use the numerical
approach to obtain an approximation solution for the problem. To solve a linear integral
equation numerically, discretization of integral equation to the solution of system of lin-
ear algebraic equations is the basic concept used by researchers to solve integral equation
problems. There are many discretization schemes can be used to gain a system of linear
algebraic equations such as quadrature (Baker [5]; Polyanin & Manzhirov [12]; Abdou [1];
Laurie [10]), least squares (Ashour [4]), collocation (Maleknejad et al. [11]) and wavelet
(Maleknejad et al. [11]) methods.
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Consequently, the concept of the two-stage has been proposed widely to be one of the
efficient methods for solving any system of linear algebraic equations. There are many two-
stage iterative methods can be considered such as AGE (Evans & Sahimi [7]), IADE (Sahimi
et al. [15]), RIADE (Sahimi & Khatim [16]), HSIADE (Sulaiman et al. [18]), QSIADE
(Sulaiman et al. [19]), Asynchronous (Frommer & Szyld [8]), Block Jacobi (Allahviranloo
et al. [3]) and Arithmetic Mean (AM) methods (Ruggiero & Galligani [14]).

Sulaiman et al. [20] has introduced Half-Sweep Arithmetic Mean (HSAM) method
by combining the concept of half-sweep iteration and AM method. Half-sweep iterative
method was introduced by Abdullah [2] via the Explicit Decoupled Group (EDG) to solve
two-dimensional Poisson equation. Further studies of the HSAM method have been also
conducted by Sulaiman et al. [21, 22] to solve Poisson equation. Apart from the HSAM
method, Sulaiman et al. [23] also introduced Half-Sweep Geometric Mean (HSGM) method,
combination of Geometric Mean (GM) method and half-sweep iteration. Sulaiman et al. [24]
have been conducted a study to solve two-point boundary problems to verify the effectiveness
of HSGM method. GM method can be also named as the Full-Sweep Geometric Mean
(FSGM) method. In this paper, formulations of the FSGM and HSGM methods were
developed to solve linear Fredholm integral equations of the first kind.

2 Full- and Half-sweep Quadrature Approximation Equations

Referring Fig. 1, the finite grid networks show the implementation of the full- and half-sweep
iterative methods. Based on the Fig. 1, FSGM and HSGM methods will compute approx-
imate values onto node points of type • only until the convergence criterion is reached.
Then approximate values of other remaining points (points of the different type) are com-
puted using the direct method, see Abdullah [2], Ibrahim & Abdullah [9] and Sulaiman &
Abdullah [17].

Figure 1: a) and b) Show the Distribution of Node Points for the Full- and Half-sweep
Cases Respectively

In this paper, a discretization scheme based on method of quadrature was used to
construct an approximation equation of an integral equation by replacing the integral to
finite sums. Such formulas are called quadrature formulas and, in general have the form

∫ b

a

y(t)dt =
n∑

j=0

Ajy(tj) + εn(y) (2)

where tj(j = 0, 1, . . . , n) are the abscissas of the partition points of the integration interval
[a,b] or quadrature (interpolation) nodes, Aj(j = 0, 1, . . . , n) are numerical coefficients that
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do not depend on the function y(t) and εn(y) is the truncation error of Eq. (2). To facilitate
in formulating the full- and half-sweep approximation equations for linear Fredholm equation
of the first kind, further discussion will be restricted onto repeated trapezoidal rule, which
is based on linear interpolation formulas with equally spaced data. Based on repeated
trapezoidal rule, numerical coefficients Aj are satisfied by the following relation

Aj =
{

1
2h, j = 0, n
h, j = 1, 2, · · · , n− 1 (3)

where the constant step size, h is defined as

h =
b− a

n
(4)

and n is the number of subintervals in the interval [a,b]. In this paper, interval [a,b] will be
uniformly divided into n = 2m, m ≥ 2 and then consider the discrete set of points be given
as xi = a + ih.

By applying Eq. (2) into Eq. (1) and neglecting the error,εn(y), a system of linear al-
gebraic equations can be formed for approximation values y(x) at the nodes x0, x1, . . . , xn.
The following linear system generated either by the full- or half-sweep approximation equa-
tion can be easily shown as

M y
∼

= f
∼

(5)

where

M =




A0K 0,0 A1pK 0,1p · · · AnK 0,n

A0K 1p,0 A1pK 1p,1p · · · AnK 1p,n

...
...

. . .
...

A0K n,0 A1pK n,1p · · · AnK n,n




((n
p )+1)x((n

p )+1)

y
∼

= [y0 y1p · · · yn−p yn] T

f
∼

= [f0 f1p · · · fn−p fn] T

The value of p, which corresponds to 1 and 2, represents the full- and half-sweep cases
respectively.

3 Formulation of Geometric Mean Method

FSGM and HSGM methods are the two-stage iterative methods. Hence, the iterative pro-
cess for these methods involves two levels of virtual time such as y

∼
(1) and y

∼
(2). To develop

formulation of FSGM and HSGM methods, coefficient matrix M in Eq. (5) needs to be
decomposed into

M = L + D + U (6)
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where L, D and U are strictly lower triangular, diagonal and strictly upper triangular
matrices respectively. The general scheme for both GM methods is given by

(D + rL) y
∼

(1) = ( (1− r)D − rU) y
∼

(k) + r f
∼

(D + rU) y
∼

(2) = ( (1− r)D − rL) y
∼

(k) + r f
∼

y
∼

(k+1) =
√

y
∼

(1)y
∼

(2)





(7)

where r and y
∼

(k) represent as an acceleration parameter and an unknown vector at the kth

iteration respectively.
The value of r will be determined by implementing some numerical experiments by using

computer programs. A value of r will be chosen by considering the smallest number of its
iteration. By determining values of matrices L, D and U as stated in Eq. (6), the general
algorithm for FSGM and HSGM schemes in Eq. (7) would be described in Algorithm 1.
The FSGM and HSGM algorithms are explicitly performed by using all equations at level
(1) and (2) alternatively until the specified convergence criterion is satisfied.

Algorithm 1: FSGM and HSGM schemes

i) Level (1)

For i = 0, 1p, 2p, · · · , n− p, n

Calculate

y
(1)
i ←





(
(1− r)AiKiiy

(k)
i − r

n∑
j=1p

AjKijy
(k)
j + rfi

)
/AiKii , i = 0

(
(1− r)AiKiiy

(k)
i − r

n−p∑
j=0

AjKijy
(1)
j + rfi

)
/AiKii , i = n

(
(1− r)AiKiiy

(k)
i − r

i−p∑
j=0

AjKijy
(1)
j − r

n∑
j=i+p

AjKijy
(k)
j + rfi

)
/AiKii , others

ii) Level (2)

For i = n, n− p, · · · , 2p, 1p, 0

Calculate

y
(2)
i ←





(
(1− r)AiKiiy

(k)
i − r

n∑
j=1p

AjKijy
(2)
j + rfi

)
/AiKii , i = 0

(
(1− r)AiKiiy

(k)
i − r

n−p∑
j=0

AjKijy
(k)
j + rfi

)
/AiKii , i = n

(
(1− r)AiKiiy

(k)
i − r

i−p∑
j=0

AjKijy
(k)
j − r

n∑
j=i+p

AjKijy
(2)
j + rfi

)
/AiKii , others

iii) For i = 0, 1p, 2p, · · · , n− p, n
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Calculate

y
(k+1)
i ←

√
yi

(1)yi
(2)

In comparison, the Full-Sweep Gauss-Seidel (FSGS) acts as the control of comparison
of numerical results. In the implementation of the FSGS, FSGM and HSGM methods, the
convergence test considered the tolerance error, ε = 10−10.

4 Numerical Results

In order to verify the effectiveness of the proposed methods, several numerical tests were
conducted. Three criteria will be considered in comparison for FSGM and HSGM methods
such as number of iterations, execution time and maximum absolute error. As mentioned
above, repeated trapezoidal method is used to discretize and to form a system of linear
algebraic equation for the following examples.

Example 1 (Dobner, [6])

∫ 1

0

K(x, t) y(t) dt =
1
6
(x3 − x) , 0 ≤ x ≤ 1,

with kernel

K(x, t) =
{

t(x− 1), t < x
x(t− 1), x ≤ t

and the exact solution of the problem is given by

y(x) = x.

Results of numerical experiments, which were obtained from implementations of the
FSGS, FSGM and HSGM methods for Example 1, have been recorded in Table 1. Figs.
2 and 3 show number of iterations and execution time versus mesh size respectively for
Example 1.
Example 2 (Rashed, [13])

∫ 1

0

K(x, t) y(t) dt = ex + (1− e)x− 1 , 0 ≤ x ≤ 1,

with kernel

K(x, t) =
{

t(x− 1), t ≤ x
x(t− 1), x < t

.

Exact solution of the problem is
y(x) = ex.

For Example 2, numerical results of FSGS, FSGM and HSGM methods have been
recorded in Table 2. Graphs of number of iterations and execution time versus mesh size
for Example 2 shown in Figs. 4 and 5.
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Table 1: Comparison of a Number of Iterations, Execution Time (Seconds) and Maximum
Absolute Error for the Iterative Methods (Example 1)

Figure 2: Number of Iterations Versus Mesh Size of the FSGS, FSGM and HSGM Methods
for Example 1
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Figure 3: The Execution Time (Seconds) Versus Mesh Size of the FSGS, FSGM and HSGM
Methods for Example 1

Table 2: Comparison of a Number of Iterations, Execution Time (Seconds) and Maximum
Absolute Error for the Iterative Methods (Example 2)
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Figure 4: Number of Iterations Versus Mesh Size of the FSGS, FSGM and HSGM Methods
for Example 2

Figure 5: The Execution Time (Seconds) Versus Mesh Size of the FSGS, FSGM and HSGM
Methods for Example 2
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5 Conclusion

In the previous section, the formulation of full- and half-sweep quadrature approximation
equations based on repeated trapezoidal rule can easily generate a system of linear algebraic
equations as shown in Eq. (5). Through numerical results obtained for Example 1 (in Table
1), shows that number of iterations of FSGM and HSGM methods decreased approximately
44.86% - 77.44% and 48.11% - 77.44% respectively compared to the FSGS method. In terms
of execution time, both the FSGM and HSGM methods are much faster than the FSGS
method about 5.88% - 51.33% and 68.75% - 82.25% respectively. Number of iterations for
FSGM and HSGM iterative methods for Example 2 as shown in Table 2 decreased approx-
imately 43.01% - 76.36% and 45.60% - 76.36% compared with FSGS method. Through the
observation in Table 2 and Fig. 5, show that execution time for FSGM and HSGM methods
decreased about 22.73% - 52.71% and 72.73% - 88.49% respectively compared to the FSGS
method.

Overall, the numerical results prove that the HSGM iterative method is a better method
compared with the FSGS and FSGM methods. This is due to the computational complexity
of the HSGM method is approximately 50% less than FSGM method.
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