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Abstract In this short note we took another look at the concepts of super-open and

super-closed sets and super-continuity and gave some properties of these concepts in

the Cartesian product with the Tychonoff topology. Further, we characterized super-

continuous functions from an arbitrary topological space into the product space. The

result we obtained runs parallel to the one we have for continuous functions in the

product space. Other results involving super-continuous functions in the product space

are also given.
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1 Introduction

The first attempt to replace various concepts in topology with concepts possessing either of
weaker or stronger properties was done by Levine [1] in 1963. In his work, Levine introduced
the concept of semi-open set and used this to define other new concepts such as semi-closed
set and semi-continuity of a function.

After this notable work of Levine on the concept of semi-open set, several mathemati-
cians became interested in introducing other topological concepts which can replace the
concept of open set. Over the years, a number of generalizations of the concept of open set
have been coined and numerous results have been obtained. For instance, when open sets
are replaced by semi-open sets, new results were generated some of which are generalizations
of the existing ones.

In 1968, Volicko [2] introduced the concept of super-continuity between topological
spaces. He also defined the concepts such as super-closure and super-interior of a sub-
set of a topological space. Recently, Al-Hawary [3] characterized super-continuity and gave
relationships between super-continuity and the other well-known variations of continuity
such as strong continuity, semi-continuity, and closure continuity.

Let (X, τ ) be a topological space and A ⊆ X. The super-closure and super-interior of
A are, respectively, denoted and defined by

Cls(A) = {x ∈ X : Cl(U) ∩ A 6= ∅ for every open set U containing x}

and
Ints(A) = {x ∈ X : Cl(U) ⊆ A for some open set U containing x},

where Cl(U) is the closure of U in X. A subset A of X is super-closed if Cls(A) = A and
super-open if Ints(A) = A. Equivalently, A is super-open if and only if X\A is super-closed.
A function f : X → Y is super-continuous if f−1(G) is super-open in X for every open set
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G in Y . Equivalently, f : X → Y is super-continuous if f−1(F ) is super-closed in X for
every closed set F in Y .

Now, let A be an indexing set and {Yα : α ∈ A} be a family of topological spaces. For
each α ∈ A, let τα be the topology on Yα. The Tychonoff topology on Π{Yα : α ∈ A}
is the topology generated by a subbase consisting of all sets p−1

α (Uα), where the projec-
tion map pα : Π{Yα : α ∈ A} → Yα is defined by pα(〈yβ〉) = yα, Uα ranges over all
members of τα, and α ranges over all elements of A. Corresponding to Uα ⊆ Yα, denote
p−1

α (Uα) by 〈Uα〉. Similarly, for finitely many indices α1, α2, . . . , αn, and sets Uα1
⊆ Yα1

,
Uα2

⊆ Yα2
, . . . , Uαn

⊆ Yαn
, the subset

〈Uα1
〉 ∩ 〈Uα2

〉 ∩ · · · ∩ 〈Uαn
〉 = p−1

α1
(Uα1

) ∩ p−1

α2
(Uα2

) ∩ · · · ∩ p−1

αn
(Uαn

)

is denoted by 〈Uα1
, Uα2

, . . . , Uαn
〉. We note that for each open set Uα subset of Yα,

〈Uα〉 = p−1

α (Uα) = Uα ×Πβ 6=αYβ . Hence, a basis for the Tychonoff topology consists of sets
of the form 〈Bα1

, Bα2
, ..., Bαk

〉, where Bαi
is open in Yαi

for every i ∈ K = {1, 2, ..., k}.
Now, the projection map pα : Π{Yα : α ∈ A} → Yα is defined by pα(〈yβ〉) = yα for each

α ∈ A. It is known that every projection map is a continuous open surjection. Also, it is
well known that a function f from an arbitrary space X into the Cartesian product Y of
the family of spaces {Yα : α ∈ A} with the Tychonoff topology is continuous if and only if
each coordinate function pα ◦ f is continuous, where pα is the α-th coordinate projection
map.

In this paper, we present some properties of the concepts introduced by Volicko in the
Cartesian product with the Tychonoff topology. We also gave a necessary and sufficient
condition for a function from an arbitrary topological space into the product space to be
super-continuous.

2 Results

We begin by stating two simple lemmas.

Lemma 1 Let (X, τ ) be a topological space and A ⊆ X. Then x ∈ Cls(A) if and only if
Cl(B) ∩ A 6= ∅ for every basic open set B in X containing x.

Proof Let x ∈ Cls(A). Then Cl(U) ∩ A 6= ∅ for every open set U in X with x ∈ U . It
follows that if B is a basic open set in X contaning x, then Cl(B) ∩ A 6= ∅.

Conversely, suppose that Cl(B) ∩ A 6= ∅ for every basic open set B in X with x ∈ B.
Let U be an open set in X with x ∈ U . Then there exists a basic open set B0 contained in
U such that x ∈ B0 . By assumption, Cl(B0) ∩ A 6= ∅. Since Cl(B0) ⊆ Cl(U), it follows
that Cl(U) ∩ A 6= ∅. This shows that x ∈ Cls(A). 2

Lemma 2 Let (X, τ ) be a topological space and let τ∗ be the family consisting of all the
super-open subsets of X. Then τ∗ is a topology on X.

Proof It is very clear that ∅ and X are super-open sets. Now, let {Gα : α ∈ A} be a
family of all super-open subsets of X and let O =

⋃
{Gα : α ∈ A}. Let x ∈ O. Then x ∈ Gα

for some α ∈ A. Since Gα is super-open in X, there exists an open set U in X such that
x ∈ U and Cl(U) ⊆ Gα ⊆ O. Therefore, O is super-open in X.
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Next, let G1 and G2 be super-open sets and let x ∈ G1 ∩G2. Then there exist open sets
V1 and V2 with x ∈ V1 ∩ V2 such that Cl(V1) ⊆ G1 and Cl(V2) ⊆ G2. Clearly, V1 ∩ V2 is
open, x ∈ V1 ∩ V2 and Cl(V1 ∩ V2) ⊆ Cl(V1) ∩ Cl(V2) ⊆ G1 ∩ G2. This proves that τ∗ is a
topology on X. 2

We shall be needing the following result later.

Theorem 1 A function f : X → Y is super-continuous on X if and only if f−1(B) is

super-open in X for every basic open set B in Y .

Proof Suppose that f is super-continuous on X and let B be a basic open set in Y . Then,
by definition, f−1(B) is super-open in X.

For the converse, suppose that f−1(B) is super-open in X for all B ∈ Ω, where Ω is a
basis for the topology associated with Y . If G is an open set, then G =

⋃
{B : B ∈ Ω∗},

where Ω∗ ⊆ Ω. It follows that f−1(G) =
⋃
{f−1(B) : B ∈ Ω∗}. By Lemma 2, the result

follows. 2

The following remark follows from Lemma 1 and Theorem 1.

Remark 1 A function f : X → Y is super-continuous on X if and only if f−1(B) is
super-open in X for every subbasic open set B in Y .

The following result can be found in Dugundji [4].

Theorem 2 Let {Yα : α ∈ A} be a family of topological spaces and Aα ⊆ Yα for each

α ∈ A. Then, in Π{Yα : α ∈ A} with the Tychonoff topology,

Cl(Π{Aα : α ∈ A} = Π{Cl(Aα) : α ∈ A}.

The next result says that Theorem 2 still holds even if closure is replaced by super-
closure.

Theorem 3 Let {Yα : α ∈ A} be a family of topological spaces and Aα ⊆ Yα for each

α ∈ A. Then, in Y = Π{Yα : α ∈ A} with the Tychonoff topology,

Cls(Π{Aα : α ∈ A}) = Π{Cls(Aα) : α ∈ A}.

Proof Let A = Cls(Π{Aα : α ∈ A}) and B = Π{Cls(Aα) : α ∈ A}. Let x = 〈aα〉 ∈ A.
Then, by Lemma 2 and Theorem 2,

Cl(〈Uα1
, . . . , Uαn

〉) ∩ Π{Aα : α ∈ A}

= 〈Cl(Uα1
), Cl(Uα2

), . . . , Cl(Uαn
)〉 ∩Π{Aα : α ∈ A}

6= ∅

for every finite collection {α1, α2, . . . , αn} of indices from A. Suppose that there exists
β ∈ A such that aβ /∈ Cls(Aβ). Then there exists an open set Uβ with aβ ∈ Uβ such that
Cl(Uβ) ∩ Aβ = ∅. It follows that x = 〈aα〉 ∈ 〈Uβ〉 and

Cl(〈Uβ〉) ∩Π{Aα : α ∈ A} = Π{Aα : α 6= β} × (Cl(Uβ) ∩ Aβ) = ∅.
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This clearly contradicts our assumption. Therefore, x ∈ B and hence, A ⊆ B.
To show the other inclusion, suppose that x = 〈aα〉 ∈ B. Then aα ∈ Cls(Aα) for

all α ∈ A. This means that for every α ∈ A and for every open set Uα in Yα with
aα ∈ Uα, we have Cl(Uα) ∩ Aα 6= ∅. Choose bα ∈ Cl(Uα) ∩ Aα 6= ∅ for each α ∈ A.
Let V = 〈Vα1

, Vα2
, . . . , Vαn

〉 be a basic open set in Y with x ∈ V . Since aαi
∈ Vαi

for
each i ∈ J = {1, 2, · · · , n}, it follows that Cl(Vαi

) ∩ Aαi
6= ∅ for all i ∈ J . Choose

cαi
∈ Cl(Vαi

)∩Aαi
6= ∅ for each i ∈ J . Define y = 〈dα〉 by dα = bα for each α ∈ A\K and

dαi
= cαi

for each i ∈ J , where K = {α1, α2, · · · , αn}. Then

y ∈ Π{Aα : α /∈ K} × (Cl(Vα1
) ∩ Aα1

) × · · · × (Cl(Vαn
) ∩ Aαn

).

Thus,

Cl(〈Vα1
, · · · , Vαn

〉) ∩ Π{Aα : α ∈ A}

= Π{Aα : α /∈ K} × (Cl(Vα1
) ∩ Aα1

) × · · · × (Cl(Vαn
) ∩ Aαn

)

6= ∅.

Hence, by Lemma 1, x ∈ A. This shows that B ⊆ A. Accordingly, A = B. 2

Theorem 4 Let O be a non-empty super-open set in the product space Y = Π{Yα : α ∈ A}.
Then pα(O) = Yα for all but at most finitely many α and pα(O) is super-open in Yα for

every α ∈ A.

Proof Let x ∈ O. Then there exists a basic open set 〈Uα1
, · · · , Uαn

〉 containing x and
〈Cl(Uα1

), Cl(Uα2
), · · · , Cl(Uαn

)〉 ⊆ O by Theorem 2. It follows that

pα(〈Cl(Uα1
), Cl(Uα2

), · · · , Cl(Uαn
)〉) ⊆ pα(O)

for every α ∈ A. Now, since pα(〈Cl(Uα1
), Cl(Uα2

), · · · , Cl(Uαn
)〉) = Yα for each

α /∈ {α1, · · · , αn}, it follows that pα(O) = Yα for all but at most a finite number of in-
dices in A.

Next, let α ∈ A. Then pα(O) = Yα or pα(O) 6= Yα. If pα(O) = Yα, then it is super-open
in Yα. Suppose that pα(O) 6= Yα and let a ∈ pα(O). Then there exists x = 〈aα〉 ∈ O
such that pα(x) = a. Since O is super-open there exists an open set E = 〈Vα1

, · · · , Vαk
〉

containing x such that 〈Cl(Vα1
), Cl(Vα2

), · · · , Cl(Vαk
)〉 ⊆ O. Then a = pα(x) ∈ pα(E) =

Vα, where α ∈ {α1, α2, · · · , αk}, and pα(Cl(E)) = Cl(Vα) ⊆ pα(O). This shows that pα(O)
is super-open in Yα. 2

Remark 2 The converse of Theorem 4 is not true.

To see this, consider Y1 = {1, 2, 3} and Y2 = {a, b, c} with the respective topologies
τ1 = {Y1, ∅, {2}, {1, 2}, {2, 3}} and τ2 = {Y2, ∅, {a}, {c}, {a, c}}. Consider the set
O = {(1, a), (2, c), (3, b)}. Then the family B consisting of the sets Y1 × Y2, ∅, Y1 × {a},
Y1 ×{c}, Y1×{a, c}, {2}×Y2,{1, 2}×Y2, {2, 3}×Y2, {(1, a), (2, a)}, {(1, c), (2, c)}, {(2, a)},
{(2, c)}, {(2, a), (2, c)},{(2, a), (3, a)}, {(2, c), (3, c)}, {(1, a), (1, c), (2, a), (2, c)}, and
{(2, a), (2, c), (3, a), (3, c)} is a basis for the Tychonoff topology on Y1 × Y2. Since p1(O) =
{1, 2, 3} = Y1 and p2(O) = {a, b, c} = Y2, it follows that p1(O) and p2(O) are super-open
in Y1 and Y2, respectively. However, since there exists no basic open set V in Y containing
(1, a) with Cl(V ) ⊆ O, it follows that O is not super-open in Y . 2
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Theorem 5 Let S = {α1, α2, ..., αk} be a finite subset of A and ∅ 6= Oαi
⊆ Yαi

for each

αi ∈ S. Then 〈Oα1
, Oα2

, ..., Oαk
〉 is super-open in Y = Π{Yα : α ∈ A} if and only if each

Oαi
is super-open in Yαi

.

Proof Let O = 〈Oα1
, Oα2

, ..., Oαk
〉 and suppose that each Oαi

is a non-empty super-open
set in Yαi

. Let x = 〈aα〉 ∈ O. Then aαi
∈ Oαi

for every i ∈ J = {1, 2, · · · , k}. Hence, for
each i ∈ J , there exists an open set Vαi

in Yαi
with aαi

∈ Vαi
such that Cl(Vαi

) ⊆ Oαi
.

Let V = 〈Vα1
, . . . , Vαk

〉. By Theorem 2, Cl(V ) = 〈Cl(Vα1
), Cl(Vα2

), . . . , Cl(Vαk
)〉. Thus,

V is an open set in Y with x ∈ V such that Cl(V ) = 〈Cl(Vα1
), Cl(Vα2

), . . . , Cl(Vαk
)〉 ⊆ O.

Thus, O is a super-open set in Y .
Conversely, suppose that O is a non-empty super-open set in Y . By Theorem 4, pαi

(O) =
Oαi

is super-open in Yαi
for every i ∈ {1, 2, ..., k}. 2

We shall now characterize super-continuous functions from an arbitrary topological space
X into the product space Y .

Theorem 6 Let X be a topological space and Y = Π{Yα : α ∈ A} a product space. A

function f : X → Y is super-continuous on X if and only if each coordinate function pα ◦ f
is super-continuous on X.

Proof Suppose that f is super-continuous on X. Let α ∈ A and Uα be open in Yα. Since
pα is continuous, p−1

α (Uα) is open in Y . Hence,

f−1(p−1

α (Uα)) = (pα ◦ f)−1(Uα)

is a super-open set in X since f is super-continuous. Thus, pα ◦ f is super- continuous for
every α ∈ A.

Conversely, suppose that each coordinate function pα ◦ f is super- continuous. Let Gα

be open in Yα. Then 〈Gα〉 is a subbasic open set in Y and

(pα ◦ f)−1(Gα) = f−1(p−1

α (Gα)) = f−1(〈Gα〉)

is a super-open set in X. Therefore, f is super-continuous on X, by Remark 1. 2

Corollary 1 Let X be a topological space, Y the product space and fα : X → Yα a
function for each α ∈ A. Let f : X → Y be the function defined by f(x) = 〈fα(x)〉. Then
f is super-continuous on X if and only if fα is super-continuous for each α ∈ A.

Proof For each β ∈ A and each x ∈ X, we have

(pβ ◦ f)(x) = pβ(f(x)) = pβ(〈fα(x)〉) = fβ(x).

Thus, pβ ◦ f = fβ for every β ∈ A. The result now follows from Theorem 6. 2

Theorem 7 Let X and Y be the product spaces of the families of spaces {Xα : α ∈ A}
and {Yα : α ∈ A}, respectively, and for each α ∈ A, let fα : Xα → Yα be a function. If

each fα is super-continuous, then the function f : X → Y , defined by f(〈xα〉) = 〈fα(xα)〉,
is super-continuous on X.
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Proof Let 〈Vα〉 be a subbasic open set in Y . Then f−1(〈Vα〉) = 〈f−1

α (Vα)〉. Since fα

is super-continuous, f−1

α (Vα) is super-open in Xα. Now, we let an element x = 〈xβ〉 ∈
〈f−1

α (Vα)〉. Then xα ∈ f−1

α (Vα). Hence, there exists an open set Gα in Xα with xα ∈ Gα

such that Cl(Gα) ⊆ f−1

α (Vα). Clearly, 〈Gα〉 is open in X and x ∈ 〈Gα〉. By Theorem 2,
Cl(〈Gα〉) = 〈Cl(Gα)〉 ⊆ 〈f−1

α (Vα)〉. This shows that f−1(〈Vα〉) = 〈f−1

α (Vα)〉 is super-open
in X. Therefore, f is super-continuous on X. 2

3 General Remarks

The paper has so far described super-open sets and established the formula of the super-
closure of a set in a Cartesian product space. Moreover, the paper has formulated a neces-
sary and sufficient condition for super-continuity of a function from an arbitrary space into
the product space. This particular result is the counterpart of the known characterization
of the ordinary continuity of a function into a product space. The results generated in this
paper would certainly find importance as one explores further other possible concepts (e.g.
separation axioms, axioms of countabilty, and compactness) involving super-open sets and
studies them in the product space.
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