TY - JOUR
AU - Dutta, Mriganka Sekhar
AU - Saikia, Helen K.
PY - 2018/12/30
Y2 - 2023/12/05
TI - A Study of Cyclic Codes Via a Surjective Mapping
JF - MATEMATIKA
JA - MATEMATIKA
VL - 34
IS - 2
SE - Articles
DO - 10.11113/matematika.v34.n2.826
UR - https://matematika.utm.my/index.php/matematika/article/view/826
SP - 325-332
AB - In this article, cyclic codes of length $n$ over a formal power series ring and cyclic codes of length $nl$ over a finite field are studied. By defining a module isomorphism between $R^n$ and $(Z_4)^{2^kn}$, Dinh and Lopez-Permouth proved that a cyclic shift in $(Z_4)^{2^kn}$ corresponds to a constacyclic shift in $R^n$ by $u$, where $R=\frac{Z_4[u]}{<u^{2^k}-1>}$. We have defined a bijective mapping $\Phi_l$ on $R_{\infty}$, where $R_{\infty}$ is the formal power series ring over a finite field $\mathbb{F}$. We have proved that a cyclic shift in $(\mathbb{F})^{ln}$ corresponds to a $\Phi_l-$cyclic shift in $(R_{\infty})^n$ by defining a mapping from $(R_{\infty})^n$ onto $(\mathbb{F})^{ln}$. We have also derived some related results.
ER -